Greetings,
What's the canonical source for patches to 2.9BSD and 2.11BSD?
I see we have 2.11BSD patch 469 dated last month in the archive. Where does
it come from? Has anybody climbed the hill to import all the patches into a
git repo? I've found some mirrors, but moe.2bsd.org has been down for me
for ages... How does Warren keep things up to date?
I also have a (maybe faulty) memory of a similar series of patches to
2.9BSD because it was the last BSD to support non-split I&D space machines.
yet a quick google search turns up nothing other than a set of patches
dated August 1985 (also in our archive) and some changes for variants of
hardware (pro, mscp). Is that it?
Warner
I know something!
On Fri, Jul 01, 2022 at 04:05:30PM +0300, Ori Idan wrote:
> > o why CTRL/S and CTRL/Q are used for flow control in a shell command
> > line session
> >
> Also would be happy to know.
https://en.wikipedia.org/wiki/Software_flow_control
But I don't know the answer to Ctrl-D. :( And also the bus error
and maybe the segmentation fault if it hasn't to do with a segment
register.
Matthias
--
When You Find Out Your Normal Daily Lifestyle Is Called Quarantine
I've been looking into the history of the nl command lately, which has gotten me curious as to what facilities folks have used at various points in UNIX history for line numbering.
The earliest version of nl I've found is in System III, and it does not derive from Research, PWB, or CB. Neither does it come from BSD, although BSD has the num command which, according to the source commentary, aims to replicate the '#' behavior of ex.
Were there any other facilities for printing back arbitrary lines from a file with line numbers?
Also, would anyone happen to know if the above appearance of nl might have been from the USG line given none of the others feature it? It neither seems to be in V8-V10. nl has managed to find its way into the POSIX standard, so it definitely has some staying power wherever it came from.
- Matt G.
{I was going to reply to an earlier message, but my CFS left me with
insufficient energy; I'll try and catch up on the points I was goibf to make
here.}
> From: Gavin Tersteeg
> This leaves me with about 1.9kb of space left in the kernel for
> additional drivers
I'm curious how much memory you have in your target system; it must not be a
lot, if you're targeting LSX.
I ask because LSX has been somewhat 'lobotimized' (I don't mean that in a
negative way; it's just recognition that LSX has had a lot of corners
trimmed, to squeeze it down as much as possible), and some of those trims
behind some of the issues you're having (below).
At the time the LSI-11 came out, semiconductor DRAM was just getting started,
so an LSI-11 with 8KB onboard and a 32KB DRAM card (or four 8KB MMV11 core
memory cards :-), to produce the 40KB target for LSX systems, was then a
reasonable configuration. These days, one has to really search to find
anything smaller than 64KB...
It might be easier to just run MINI-UNIX (which is much closer to V6, and
thus a known quantity), than add a lot of things back in to LSX to produce
what will effectively be MINI-UNIX; even if you have to buy a bit more QBUS
memory for the machine.
> the LSX "mkfs" was hardcoded to create filesystems with 6 blocks of
> inodes. This maxed the number of files on a disk to 96, but even with
> the maximum circumvented LSX would only tolerate a maximum of 101 files.
And here you're seeing the 'lobotomizing' of LSX come into play. That '101'
made me suspicious, as the base V6 'caches' 100 free inodes in the
super-block; once those are used, it scans the ilist on disk to refill it.
The code in alloc$ialloc in LSX is hard to understand (there are a lot of
#ifdef's), and it's very different from the V6 code, but I'm pretty sure it
doesn't refill the 'cache' after it uses the cached 100 free inodes. So, you
can have as many free inodes on a disk as you want, but LSX will never use
more than the first 100.
(Note that the comment in the LSX source "up to 100 spare I nodes in the
super block. When this runs out, a linear search through the I list is
instituted to pick up 100 more." is inaccurate; it probably wasn't updated
after the code was changed. ISTR tis is true of a lot of the comments.)
Use MINI-UNIX.
> A fresh filesystem that was mkfs'd on stock V6 can be mounted on LSX,
> but any attempt to create files on it will fail.
The V6 'mkfs' does not fill the free inode cache in the super-block. So, it's
empty when you start out. The LSX ialloc() says:
if(fp->s_ninode > 0) {
...
}
u.u_error = ENOSPC;
return(NULL);
which would produce what you're seeing.
Also, another problem with trying to 'push' LSX into a previously un-handled
operating regions (e.g. large disks, but there are likely others) is that
there are probably things that are un-tested in that previously unused
operating mode, and there may be un-found bugs that you trip across.
Use MINI-UNIX.
> Interestingly enough, existing large V6 RK05 images can be mounted,
> read from, and written to. The only limitations on these pre existing
> images is that if enough files are deleted, the system will randomly crash.
I had a look at the source (in sys4.c, nami.c, iget.c, rdwri.c, and alloc.c),
but I couldn't quickly find the cause; it isn't obvious. (When unlinking a
file, the blocks in the file have to be freed - that's inode 'ip' - and the
directory - inode 'pp' - has to be updated; so it's pretty complicated.)
Use MINI-UNIX.
> The information there about continuous files ... will be extremely
> helpful if I ever try to make those work in the future.
My recollection is that the LSX kernel doesn't have code to create contiguous
files; the LSX page at the CHWiki says "the paper describing LSX indicates
there were two separate programs, one to allocate space for such files, and
one to move a file into such an area, but they do not seem to be extant". If
you find them, could you let me know? Thanks.
Noel
> From: Paul Ruizendaal
> Note that LSX only holds one process in core and swaps other processes
> (NPROC = 3) out to floppy. It reportedly took several hours for the
> Terak to self-compile LSX from source.
If one is working in a simulator, and not a real hardware PDP-11, there's a
'trick' one can use to make life a lot easier - for MINI-UNIX, at least; I'll
comment on LSX below.
As I report in the MINI-UNIX Computer History Wiki article: "MINI-UNIX uses
the same file system as V6; this allows MINI-UNIX packs to be 'mounted' on V6
systems (either real, or simulated), which is very convenient for working on
them." So just spin up a V6 in the simulator, mount the LSX/MINI-UNIX pack,
and away you go. The V6 toolchain can be used to compile/link kernels; to
link user commands one will need to import the LSX/MINI-UNIX loader (which,
since V6 is source compatible with LSX/MINI-UNIX, is trivial).
LSX is potentially more complex, as it supports _two different_ file system
formats: the standard V6 one, and a 'contiguous' one which is very similar
to the V6 one (rdwri.c has no conditionals on CONTIG; not so alloc.c,
though), but is not fully compatible. So non-contiguous LSX file systems
can be mounted under V6, but not contiguous ones.
Noel
Hi,
long time lurker here. Today I ended up on an article by Christian Lee Seibold about the origin of shells [1].
Coincidentally the article explained how the “rc” files came to be and why they’re called “rc”: everything started with RUNCOM and Multics. An excerpt from the article:
====
Unix Shells have had a very long history, and it all starts with a program written by Louis Pouzin for the MIT CTSS Operating System, called RUNCOM (which stood for “run commands”). It executed commands from a file, called “a runcom”. According to Kernighan and Ritchie[1], “rc” configuration files from Unix descended from this. Tom Van Vleck also gives origins of Unix’s use of “rc” to RUNCOM [2], and notes that the first time he read the term “shell” was from Multics documentation created by Doug Eastwood. According to Louis Pouzin, he coined the word “shell”.
====
Well, now I know…
[1] https://portal.mozz.us/gemini/auragem.space/~krixano/ShellHistory-Unix.pdf
— Michelangelo
I've not seen an earlier post of mine on this topic; apologies if this
is a duplicate. Roff was probably the earliest way to get a
line-numbered file listing. Of course it took a bit of chicanery to
apply it to a roff input file, but even that was not a big shell
script.
As has often been told, Joe Ossanna used to promise of line numbers
(required by USPTO) to attract the Bell Labs patent department as the
first Unix "customer".
Doug
> More was I curious about the documentation of address chains in books.
It was even discussed in Lomutu and Lomuto, "A Unix Primer", a pleasant
book whose level is accurately described in the title.
Doug