@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is nor for publication. (See GEl 13.9-3)

Title-  Instructions for GRAPH , TEK , Date- June 30, 1976
TEKSTARE and GSIP graphics packages

E
|
|
IM- 76-1527-35 Il
Other Keywords- UNIX,MERT,STARE LI

|

i

Author Location Extension Charging Case- 39091-7
A. R. Storm MH 1B-124 6238 Filing Case- 39091-7
ABSTRACT Ll

The graph routine provides a grid, scales data and produces a label
defining the limits of the abscissa and ordinate. When this information is piped
"|" into the routine tek it is converted to data compatible with the 4014 storage
scope terminal’s internal requirements. Similarly, piping into the gsip routine
produces properly translated and formated data to drive a GSI type terminal in
the plot mode. The tekstare (tks) routine takes information in the 4014 for-
mat, transforms it to STARE compatible information and spawns a job on the ‘
HIS 6000 which produces STARE output. )

These routines were stolen from the "research” machine with the help of
M. D. Mcllroy. The graph , tek and gsip routines were written by M. D. MclI-
roy and L. L. Cherry while the tekstare (tks) routine was written by Mike
Lesk. The help of all of the above is gratefully acknowledged.

Pages Text 2 Other 7 Total 9
No. Figures 6 No. Tables 0 No. Refs. 0

Pl

SEE REVERSE SIDE FOR DISTRIBUTION LIST

E-1932.U (6-73)



///;_ T.8

New Graphic Symbols for EQN and NEQN

Carmela Scrocca

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT
There is now available on UNIX and GCOS a set of special characters fre-
quently used in technical typing. In the past, authors have sometimes written
out these symbols in English; others just assumed their secretary or typist had
these symbols ready and waiting. These characters, however, are not part of
the standard terminal or typesetter character sets, but are built-up of those
already available. They can presently be produced for phototypesetter output

by using EQN/TROFF; NEQN/NROFF can be used for computer terminal out-
put.

This document displays these characters, shows how to use them, and
discusses what is involved in making a special character.

AT




|
Bell Laboratories 1[
l
!
supect:  UNIX System Call sate: September 16, 1976 |
Measurements '
tom: C. D. Perez }
T. M. Raleigh B
MF-76-8234-079
YY=38234=4
MEMORANDUM FOR FILE LAUTENGACH, DEBOR |
Pyzai2i
SU3JECT #MATCH
Introduction

Tnis memorandum is the first of a series which will ﬂ
deal with fundamental measurements of the UNIX operating (i
system on the PDP-11 line of computers. A description 1s
given of system calls and some of their pasic measurements.

|
A
overview

The purpose of the set of measurements describad in |
this memorandum is to explore 1in detail the overhead in- H
curred in making a system call under UNIX and to oObtain \
some information on the raw processing speed of the current
PDP 11 line of processors (11740, 11/45 and 11/70).

Since the time to execute various system calls 1s o©n 1
the order of tens or nundreds of microseconds, a facility
for measurement that had a high resolution was neeaed to ob-
tain the data we desired. A trace tool designed by I.WN.
Raleigh provided the ability to record time stamped events
in a manner similar to the trace facilities awvailable on
larger time sharing systems. Wnen used with the KWw11-2 pro-
grammable clock, time stamps accurate to 10 microseconds 3

" were obtained. 1In addition, a data reduction program called m

- £sm was written to reduce the data and produce formatted U
listings and statistical information. ' ;

W
Using the trace as our basic measurement tool, ﬂ

an en-
vironment was created on each of the processors studied /i

that attempted to minimize the number of perturbations of s
measurements. Unibus interference was the chief problem and

this could only be minimized, not eliminated, pecause of the
architecture of the PDP-11.

To conduct the experiment, several system calls were
selected which do not require any scarce resources and hence
do not need to roadblock until the resource 1is available.
This eliminated any haruaware configuration proolems such as

T ——
= o




) VW oa

Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees
of Be%l Laboratories and is not for publication. (See GEI
13- 9-3

Title= Synthetic Process for UNTX Date- September 24, 1976
_ T - T6-8234-17
Other Keywords- Performance Evaluation 76-9156-2

Workload tHeasurement
Interprocess Communication

Author Location Extension Charging Case- 70107-003

D. k. bernstein MH 2F =245 2008 Filines Case- 40952-1
ABSTHACT

A synthetic job performs a parameter -
specified amount of processor cycles and disk 1/0
operations. Such jobs have been used successfully
in measurement experiments. Patterned after wide-
ly publicized versions written in Fortran and
PL/1, a UNTX version has been implemented in the C
language. Input/output options for this version
comprise read, write, retc, oute, getw, putw, as
well as messages and pipes. The synthetic job
concept nas been extended further by providine fa-
cilities for issuing an arbitrary sequence of sys-
tem calls such as fork, exec, kill, nice, sleep
and wait. With these facilities, networks of
cooperating synthetic processes can be constructed
as models of applications. The synthetic process
writes self-timing information into a report file.
Some measurements of system calls comparing dif-
ferent hardware (PDP-11/45 and /70) and software
(UNIX and MERT) are presented for illustration.

Pages Text 6 Other 14 Total 20

No. Figures 1 No. Tables 1 No. Refs, y
E-1932-U (6-73)SEE REVERSE STDE rOR DISTRIBUTION LIST

DATE FILE

S




19SS

Bell Laboratories

subject: NROFF/TROFF Formatting Codes for Departmental Organization date: September 1, 1976
Directories on PWB/UNIX
Case: 39373-99 from: D. W. Smith
PY 9141
1B-112 x7315

MEMORANDUM FOR FILE

1. INTRODUCTION

This memo describes a PWB/UNIX documentation facility for departmental organization directories.
Keeping these directories on UNIX has the following advantages:

ease of correction,
no need to retype an entire chart to make updates,
ability to move lines within a chart and from one chart to another.

2. MACRO DESCRIPTIONS

The data for a chart is entered into a UNIX file, one file per department. There is a particular two-
letter code for each employee classification. Following each two-letter code (a macro in UNIX jargon)
are the employee’s last name and initials, the name the person goes by (first name or nickname), room
number, and telephone extension. There are additional macros for the date, department name and
number, groups within the department, special symbols which may be added to certain lines, and notes
that explain the symbols.

2.1 Codes for Employees
A line for each employee must be typed as follows:

xx last-name-and-initials first-name room extension

where .xx is the two-letter code for one of the following occupational classifications:!

.DH Department Head BA  Business Systems Analyst
.DS Department Secretary BS Business Systems Specialist
.SV Supervisor .GC General Clerk

.MT Member of Technical Staff SC Service Clerk

_AM Associate Member of Technical Staff .SS  Senior Service Clerk

ST Senior Technical Associate Al Staff Aide

TA Technica! Associate .CO Computer Equipment Operator
.LA Lab Assistant RV Resident Visitor

MG Member of Administrative Group .AS  Acting Supervisor

In all the macros, one or more blanks are used to separate the different items (the arguments) specified
for the macro. If blanks are to appear within an argument (e.g., 1o separate the last name from the ini.
tials), the tilde (7) character must be typed in place of the blanks, or the entire argument must be
enclosed within double quotes. For example, if Mary Ann Jones is a supervisor in some department
the data line for her could look like: . .

e & .
1. Other codes can be implemented if necessary.




N O //// é

@Boll Laboratories Cover Sheet for Technical Memorandum

The information contained hersin is for the use of employeas of Bell Laboratories and is not for publication (see GEI 13.9-3)

@ Title— LSI-UNIX System

Dote- October 6, 1976
M. 76-1352-4

Other Keywords — UNIX

Operating Systems
Personal Computer
Intelligent Terminal

Author(s) Location and Room Extension Charging Case — 39394
H. Lycklama MH 7C-211 6170

Filing Case— 39394-11

ABSTRACT

A modified version of the UNIX operating system has
been written to run on the LSI-11 microcomputer with
20K words of primary memory and floppy discs for
secondary storage. This configuration permits most
of the UNIX user programs to run on the LSI-11 micro-
computer. The main programming language used is the
structured higher-level language C. A background
process as well as foreground processes may be run.
A set of subroutines have been written to interface
to the file system on the floppy diskettes. Asyn-
chronous read/write routines are also available to
the user.

The LSI-UNIX System (LSX) has appeal as a stand-
alone system for dedicated applications. It also
has many potential uses as an intelligent terminal
system. The decreasing costs of hardware make such
a system a potential candidate for a very powerful
and inexpensive personal computer system,

Address Label
Other 2 Total 10 ¢

Pages Text

No. Figures

0
No. Tables No. Refs.

E-1832C (6-73)

SEE REVERSE SIDE FOR DISTRIBUTION LisT



S s
(&) Bell Laboratories Cover Sheet for Technical Memorandum

The information contgined

¢

herein is for the use of employees of Bell Labaratories and is not for publication (see GEI 13.9-3)

Title - ﬁyxtem for Entering Data Through Cate- October =
‘-omouter Displayed Forms

TM- T6-1352-8

Other Keywords -~ L3I-UNTY
CRT Terminal

Author(s) Location and Room Extension Charging Case - 39394
B, W. Stark*
. Lycklams " MH TC211 €170 Filing Case—  39394-11

(Responsible Engineer)

ABSTRACT

iy
o]

This document describes two programs which maks up 2 syztem
manazing a databaze through the use of computer displayed fo
A form entry program displays a form on 2 CRT screen. The u
tyves into the blanks on the screen and can either look up
existing entries con the basis of the filled-in fislds, or can
store the displayed date 23 2 naw entry. In order that the form
entry orogram ve useful for 2 variety of displays, it reads in
«F' the display specifications from 2 file. The form entry program
is thus completely independent of the data it is used with.

o

r
TS .
r

In order to facilitate the gzeneration of new form displayz and
thelr specification files, a form editor program allows the
uscer %o manipulate the display dirsctly on the CRT screen where

it will be used.

One of the unique features of these programs is their uses of
program controlled buttons undernsath the CRT screen. The
buttons are used to perform curser positioning and special
program functions.

The form entry sysftem runs on an L3I-11 computer under the
L3SY overating systam.

*#*Johns Hopkins University

i«

Pages Text

Address Labe|

W)
=

Other 3 Total

: 0 . ¥
No. Figures 0 _ NMo. Tables No. Refs.




— T T sy S

B . -~
o /) Bell Laboratories Cover Sheet for Technical Memorandum
The information contained herein is for the use of employees of Bell Laboratories and i.s ot for publication (see GEI 13.9-3)
Title— UNIX-INTELLEC MDS Interface bere September 1, 1976
™- T76-3141-1
76-3142-1

Other Keywords—- Intel 8080
Microcomputer Software Support

Author(s) Location and Room Extension  Charging Case— 39 48h-1
Joseph E. Lencoski WH 3F-314 2921
- Stuart A. Tartarone HO 3G-615 4802

Filing Cose - 36692-42

ABSTRACT o

The recent introduction of the INTELLEC MDS as a debugging :
tool for Intel 8080 microcomputer systems coupled with the i
desirability of using the powerful Intel support software *
available on UNIX PDP-11 for program development required

the design of a hardware/software interface. The software 4
package designed narmits programs which have been developed 1
on the UNIX system using the SMAL2 compiler (sc), Intel 8080 r
assembler (as80), and the link-editor (1d80) to be transmitted ‘
over a dizled-up connecticn in pure binary and loaded into i
the INTELLEC for executlon. This memorandum describes the @
interface, including a synopsis of the new UNIX commands to
access these features, and provides program listings of the

new software developed.

25 Address Label

Paoges Text __ ———— Other —""'"21 = Tt e

i
No. Tables _0___._ No. Refs.

Ne. Figures___u_———-—'

———S£E REVERSE SIDE FOR DISTRIBUTION LiST




iy -

NROFF/TROFF User’s Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

NROFF and TROFF are text processors under the PDP-11 UNIX Time-Sharing System! that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in doct._l-
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik-
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage
The general form of invoking NROFF (or TROFF) at UNIX command level is
nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con-
taining the document to be formatted. An argument consisting of a single minus (=) is taken to be a

_file name corresponding to the standard input. If no file names are given input is taken from the stan-

dard input. The options, which may appear in any order so long as they appear before the files, are:

Option Effect

—olist Print only pages whose page numbers appear in list, which consists of comma-
separated numbers and number ranges. A number range has the form N—Af and
means pages N through M; a initial —N means from the beginning to page N:and
a final N— means from N to the end.

-nN. Number first generated page M.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N=1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

—mname Prepends the macro file /usr/lib/tmac.name to the input files.
—raN Register a (one-character) is set to N.

Read standard input after the input files are exhausted.
Invoke the simultaneous input-output mode of the rd request.

-q




subject:

e

ggigsﬁgg;;m UNIX Conversions - sate: September 1, 1976

trom: E. H. Albrecht
5161—760901.01MF

" MEMORANDUM FOR FILE - -

These notes and the associated attachment were written to

arm the knowledgeable DOS-BATCH programmer with sufficient
background to permit him to develop programs, executable on

a "stand alonew PDP 11 processor, using the UNIX operating
system. The DOS-BATCH system of Department 5161 is currently
used in the mode where the machine 1s dedicated to one
individual at a time. The UNIX environment supports up to

14 simultaneous users. Because UNIX is a time sharing system,
it may also be accessed via remote terminals. -‘Therefore, a
program may be edited, assembled and linked remotely, providing
a sultable terminal is available. Load modules may be trans-
mitted to "stand alone" processors for execution. These arrange-
ments allow for extensive program modifications to be made

and tested from the werk location, at home or field trial sites.
The overall affect of such arrangements, for Department 5161,
should be to increase programming flexibility and programmer
productivity measurable through an increase in computing
resources. .

The following highlights various aspects of a DOS to UNIX
conversion procedure, and documents my encounters in the

conversion process. It 1s intended to be used more as a
directory rather than a tutorial.

DOCUMENTATION

The UNIX operating system 1s documented in the "UNIX Pro-
grammer.'s Manual" which is divided, via separaters, into
many parts. The CONTENTS Section of the UNIX Manual briefly
describes the commands, functions, etc., contained in the

.manual. The REFERENCE ‘section of the manual contains several -

memos, articles, etc., that describe UNIX in greater detail.

majority of utilities (commands) the beginnins
gﬁil uge ave located i Section (1) or L. ﬁ commzngrgﬁgiﬁmer
in the moLa o PREER ‘Would indlcate that it 1s to be
found in Section 1 or I. Within Section (I), commands are
ordered alphabetically. |

DATE FILE COPY
BELL TELEPHONE LABORATORIES




1~

PWB/UNIX Documentation Roadmap
J. R. Mashey

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

A great deal of documentation exists for PWB/UNIX. It has different formats, is contributed by many
different people, and is modified frequently. New users are often overcome by the volume and distri-
buted nature of the documentation. This “‘roadmap” attempts to be a terse, up-to-date outline of cru-
cial documents and information sources.

Numerous people have contributed comments and information for this “‘roadmap,” in order to make it
as helpful as possible for PWB/UNIX users. However, many of these comments are accurate only with regard
to PWB/UNIX and may well be totally inapplicable to other versions of UNIX.

1.1 Things te Do

See a local PWB/UNIX system administrator to obtain a “‘login name’’ and get other appropriate system
information. :

1.2 Notation Used in this Roadmap

{N} — Section N in this “‘roadmap.”
++ — item required for everyone.
4+ — item recommended for most users.

All other items are optional and depend on specific interest (a list of relevant documents appears in the
Table of Contents of Documents for the PwWBIUNIX Time-Sharing System).

Items in Section N of the PwB/UNIX User’s Manual are referred to by name(N).
1.3 Prerequisite Structure of Following Sections

(2}
l

SR O I T I
(31 (6} (7} {9} (10} (11}
/\ N/
{4) s} (8}
2. BASIC INFORMATION

Don’t do anything else until you have learned most of this sgction. You must know how to log onto
the system, make your terminal work correctly, enter and edit files, and perform basic operations on
directories and files.

2.1 PWB/UNIX User’s Manual ++

e Read Introduction and How to Get Smrtgq. .
e Look through Section I to become familiar with command names.
o Note the existence of the Table of Contents and of the Permuted Index.

Section 1 will be especially nwded for reference use.

2.2 UNIX for Beginners ++
2.3 A Tutorial Introduction to the UNIX Text Editor ++

B.1




C

«

@ Bell Laboratories

Cover Sheet for Technical Memorandum

The information contained herein is Jor the use

of emplayees of Befl Laboratories and is not for publication.

I

(See GEI 13.9-3)

Title-

Other Keywords- UNIX

76-1228-11
MERT i
Author Location Extension Charging Case- 38794

A Real-Time Time-shared Operating System for an
SEL/86 - PDP-11 Configuration

TM- 76-8231-9

W. A. Burnette MH 2D-233 xd4812 Filing Case- 38794-23

ABSTRACT

A new operating system has been written for the SEL/86 - PDP-11 computer
configuration in Department 1228. The primary purpose of the SEL - PDP-I1
system is to provide real-time interactive computing for research in speech and
grapiiics. Thé pievicus opcrating sysicms on these two computers supperted 2
single real-time user in the same style as the DDP-224 computers in Dept. 1228.
These operating systems have now been replaced by multi-user systems for
more effective utilization of both the SEL and the PDP-I11.

In this SEL/PDP-11 configuration, the SEL is connected via a high speed
channel to the PDP-11 which controls several mass storage devices and provides
the mass storage services for the SEL. The SEL controls a number of acoustic,
graphical, and interactive devices.

For the PDP-11, the MERT operating system was adopted. System-level
programs were written to provide communication between the SEL and the
MERT file system. Simultaneously, MERT provides UNIX timesharing services.
Thus users can access the same file system from either the PDP-11 or the SEL.

For the SEL, a new operaling system was written with a foreground-
background schujuler. The foreground supports the real-time user with unin-
terrupted processing until the program needs to wait for input from interactive
devices. Background jobs are processed only while the foreground is waiting
for user input. Background jobs may be prepared on remote terminals, using
MERT/UNIX, and queued until the SEL is available for background processing.

In this way, the new SEL/PDP-11 system retains the single-user services for
which this computer system was intended, but also provides a UNIX-style file
system common (o both machines, a UNIX time-shared program development
facility, and a remote job execution and debu_gging capability for SEL programs.

Date- October 29, 1976

Pages Text 12
No. Figures 0

Other 1 Total 13
No. Tables. 0 No. Refs. 7

E-1932-U (6-73)

SEE REVERSE SIDE FOR DISTRIBUTION LIST




)/ 2D

MINI-UNIX Summary

A. Hardware

MINI-UNIX runs on a DEC PDP11/10, 11/20 or 11/40 with at least the following equipment:

28K words of memory: parity not used,

disk: RKO0S5(preferably 2) or equivalent,

console typewriter,

clock: KW11-L or KW11-P,
The system is normally distributed on 9-track tape or RK0S5 packs.
The following equipment may be supported:

communications controllers such as DL11, DC11 or DH11,

full duplex 96-character ASCII terminals,

RP03, RP04 disks,

9-track tape, or extra disk for system backup. ; -
The memory and disk space specified is enough to run and maintain MINI-UNIX._ MC}EC will be needed
to keep all source on line, or to handle a large number of users. big data bases, diversified complements
of devices, or large programs. MINI-UNIX does swapping to provide multi-programming support. The
resident code of MINI-UNIX occupies 12-16K depending on configuration. The system as d:stnbg;ed
occupies 12K words of memory, allowing 16K words of memory for the user programs. Some editing
of source code is required to add new disk. tape or communication device drivers, as the system size

will likely expand beyond 12K words. Keep in mind that the C compiler requires a minimum of 12X
words of memory to run.

An 11/10, 11/20 or 11/40 is not advisable for heavy floating point work. as MINI.UNIX on this
hardware uses interpreted 11/45 floating point.

B. Software

All the programs available as MINI-UNIX commands are listed. Every command. including all options.
is issued as just one line, unless specifically noted as “‘interactive™. Interactive programs can be made
to run from a prepared script simply by redirecting input.

File processing commands that go from standard input to standard output are noted as usabie as flters.
The piping facility of the Shell may be used to connect filters directly to the input or output of other
programs. Note: pipes are not supported in the system as in standard UNIX. However "pseudo-pipes”
are supported in the Shell to enable using commands us filters.

Sofiware listed in Section 6. “*Typesetting™. is distributed separately as an enhancement 10 MINLUNIX.
Source code is included except as noted.

1 Basic Software

This package includes the time-sharing operating system with utilities, a machine language sESemibiier
and a compiler for the programming language C—enough software to write ARd Tum AEw vnlicalos
and to maintain or modify MINL-UNIX itself.

1.1 Operating System

— VINI[-UNIX The basic resident code on which everything aise depends.

Supports the system

and maintains the file system. A genergi dgscription of Unix d=sign Philosophy andca.lFs.
tem facilities appeared in the Com_mumcauons of the ACM. July, 1974 The 1 sys-
UNIX capabilities are nor included in MINLUNIX: + 12 following

e Separate instruction and data spaces on 11/45 and 11/70.
e ~Group' access permissions for cooperative projects. with T ermben
* & U El”:‘ni.—_\c




SETTING UP MINI-UNIX — Sixth Edition

Enclosed are:

1. ‘UNIX Programmer’s Manual,’ Sixth Edition.
2. Documents with the following titles:

Setting Up MINI-UNIX - Sixth Edition

The UNIX Time-Sharing System

C Reference Manual

Programming in C — A Tutorial

UNIX Assembler Reference Manual

A Tutorial Introduction to the UNIX Text Editor
UNIX for Beginners .

RATFOR — A Preprocessor for a Rational Fortran
YACC - Yet Another Compiler-Compiler
NROFF Users’ Manual

The UNIX I/0O System

A Manual for the Tmg Compiler-writing Language
On the Security of UNIX

The Mé Macro Processor

A System for Typesetting Mathematics

DC — An Interactive Desk Calculator

BC — An Arbitrary Precision Desk-Calculator Language
The Portable C Library (on UNIX)

MINI-UNIX Summary

Regenerating System Software

3. The MINI-UNIX software on magtape or disk pack.

If you are set up to do it, it might be a goqd idea immediately to make a copy of the disk
or tape to guard against disaster. The tape contains 12_’100 512-byte records followed by a single
file mark; only the first 4000 512-byte blocks on the disk are significant.

The system as distributed corresponds to three fairly full RK packs. The first contains the
binary version of all programs, and the source for th,: operating system itself; the second con-
tains all remaining source programs; the thn.rd. con}alps rpanuals intended to be printed using
the formatting programs roff or nroff. The ‘binary’ disk is enough to run the system, but you
will almost certainly want to modify some source programs.

Making a Disk From Tape
If your system is on ma

with the binaries. -
1 Mount magtape on drive O at load point.

2.  Mount formatted disk pack on drive 0.
3. Keyin and execute at 100000

gtape, perform the following bootstrap procedure to obtain a disk

Yz




= ST

(o

@

Bell Laboratories

sumect: DEC Factory Acceptance Test e January 19, 1977

R. B. Brandt
C. D. Perez
MF-77-8234-001

from:

MEMORANDUM FOR FILE

1. Introduction

During June and July, 1976, meetings were held between
members of BTL Division 52 and representatives of Digitaf
Equipment Corporation (DEC). [1,2] The primary purpgose OC
these meetings was to discuss some of the problems encoun—
tered by Operations Support Systems (CSS°s) in the field,
especially those resulting in long outages. A number OL
proposals for improving the installation and maintenance of
these 0SS°s were advanced. One such proposal was that BTL
should make available to DEC a UNIX checkout package for use
as a final factory acceptance test oOn DEC-supplied 033
hardware prior to shipment to the field site. As a result
of this suggestion, it was decided that such a checkout
package would be developed and used on a trial Dbasis for
approximately six months on Switching Control Center System
(sccs) configurations. This memorandur is a description of
the checkout package that is being used in the trial.

2. Qverview

t. was provided to DEC 1in early Decemcer,
f a UNIX "sysgen" tape and the documentation
describing how to boot UNIX from the tape and run the tests.
The "sysgen" tage 1s like those suppl;ed by the UNIX sSupport
Group (USG) to BTL projects; it contains a root file system
image and the programs that are necessary to copy the tape
to a disk and boot the UNIX systemn. Source code was notc
included, and the UNIX on the tape was configured for sccs
(11,70 with 128K memory, TU16, RPOS, and four DH11"s) at
nodification level 2.0j. A copy of the documentation that
accompanied the "sysgen' tapé 1S attached to this memoranaum
(Attachment A). The chgckouE system 1s to be run on all
sccs machines after all other DZC factory acceptanca tests
have been comgleted. _Test.results are to be documented so
that an evaluation of tne trial may be made at its comple-
tion. The checkout package is not supplied to the fielg
site for use during actual syitem Lnstallat;OQ._ See Refer-
ence (3] Zfor @ preakdown of test responsibilities for pgc
and BTL.

The package tha
1976, consists ©

pefore proceeding with a detailed description of the S




: A Tutorial Introduction to ADB
J. F. Maranzano
S. R. Bourne
Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been available on UNIX? to allow users
to examine “‘core” files that result from aborted programs. A new debugging
program, ADB, provides enhanced capabilities to examine "core” and other pro-
gram files in a variety of formats, run programs with embedded breakpoints and
patch files. ’

ADB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with exam-
ples of its use. It explains the various formatting options, techniques for
debugging C programs, examples of printing file system information and patch-

ing.

May 5, 1977

ftUNIX is a Trademark of Bell Laboratories.

» 3

qlt'j.
i/'\




/169 »:

.y ®

PwB/UNIX

“Shell Tutorial

J. R. Mashey

September 1977

Bell Telephone Laboratories, Incorporated




/! ¥
[ Setting Up PWB/UNIX " / 50

R. C. Haight

T Bell Laboratories
S Murray Hill, New Jersey 07974
M. J. Petrella

Bell Laboratories
Piscataway, New Jersey 08854

L. A. Wehr

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
1.1 Prerequisites

Before attempting to generate a PWB/UNIX® system, you should understand that a consider-
able knowledge of the attendant documentation is required and assumed. In particular, you
should be very familiar with the following documents:

The UNIX Time-Sharing System
PWBIUNIX User's Manual

C Reference Manual
Admimsiranve Advice for UNIXITS
PWBIUNIX Operanons Manual

A complete list of pertinent documentation is contained in Documents for PWBIUNIX.
Throughout this document, each reference of the form name(N). where N is a number, refers
to entry name in Section N of the PWB/UNIX User's Manual.

e o © o @

You must have a basic understanding of the operation of the hardware. This includes the con-
sole panel, the tape drives, and the disk drives. all of which are assumed to have standard
addresses and interrupt vectors. It is also assumed that the hardware works and has been com-
pletely installed. The DEC® diagnostics should have been run to test the configuration, and
you must have a detailed description of the hardware, including device addresses, interrupt vec-
tors. and bus levels. This information is very important to generate the PWB/UNIX system.

Older versions of PWB/UNIX cannot be correctly updared with a PWB/UNIX Release 2.0 sys-
temn: therefore, the installation of PWB/UNIX Release 2.0 must be done as an initial [oad.

1.2 Procedure

PWB/UNIX is distributed on two magnetic tapes, recorded in 9-track format at 800-bpi. Tape |
is essential to the entire procedure, because it contains the initial load program and a copy of
the roor file system. as well as a copy of the /usr file system (which contains source and supple-
mental commands). The initial load program will copy the roort file system from tape (either a
TU10 or a TU16) to disk (either an RP03 or an RP06). Note that RP04 and RPOS drives are
considered to be equivalent to RP06 drives: any differences will be noted explicitly. Once the
root file system has been successfully loaded to disk. PWB/UNIX may be booted and the avail-
able utility programs may then be used to complete the installation. The /usr file system con-
tains information essential to generating a new system that will match your particular hardware
and software environment.

Tape 2 contains the machine-readable manual pages. as well as the source for selectable subsys-
tems of PWB/UNIX.

———
e UNIX is a Trademark of Bell Laboratories.




IS
/ /80

Administrative Advice for UNIX/TS
R. C. Haight

; Bell Laboratories
Murray Hill, New Jersey 07974

The material presented here is based on the author’s experiences and opinions. Nevertheless,
it may prove useful. The material on phototypesetting was contributed by D. W. Smith.

1. ADMINISTRATOR'S ROAD MAP

Getting started as a UNIXt/TS system administrator is hard work. There are no real shortcuts
to a working knowledge of the system. You will need time for reading, study and hands-on
experimenting. Don’t commit yourself to “‘going live™ with your system until you have had
two weeks to teach yourself your job, and get the initial hardware quirks ironed-out.

Don'’t consign the Serring Up UNIX/TS document to oblivion after your initial system ‘“‘gen”’. In
addition to needing it again whenever you add/change equipment, you will find that it contains
valuable material about system tuning (buffers, clists, etc.) that appears nowhere eise.

As an administrator, you should be familiar with a lot of the distributed documentation. The
Internals, Operations, and Administration papers from Documents for UNIX/TS should all be stu-
died, as well as the [ntroduction, How to Get Started, and most of the entries of the UNIX/TS
User's Manual. In that manual, you should pay special attention to: accrs(IM), chmod(1),
chown(1), config(1M), cpio(1), date(1), df(1), du(1), ed(1), env(1), find(1), fsck(1IM), kill(1),
mail(1). mkdir(1). mkfs(1M), ncheck(IM), ps(1), rm(1), rmdir(1), shutdown(1M), smy(1),
su(1), sync(1M), time(1), voicopy(1M), wail(1M), who(1), and write(1) in Section 1; all of Sec-
tion 4; accr(5) in Section §; and crash(8) and vaxops(8) in Section 8.

2. SYSTEM CAPACITY
The figures below are approximations based on our experience over several years:

Number of
Hardware Configuration Simultaneous
Users
PDP-11/23; 256K-byte memory; 2 RLO1 disks* 4
PDP-11/34; 256K-byte memory with cache;

2 RLOI disks* 3
PDP-11/45; 248K-byte memory. RP03 disk* 16
Above with RP06 (RP04, RPOS) disk* 20
Above with memory cache 25

PDP-11/70; 512K-byte memory:;

RP06 (RP04, RPOS) disks*

(2 or more drives) 2
Above with 768K-byte memory and

a disk drive (or fixed-head disk)

set aside for the root file system 40
VAX-11/780; IM-byte memory;
at least 3 RP06 disks® 43

* Or equivalent.
See Serting Up UNIX/TS for the list of supported hardware options.

e

+ UNIX is a Trademark of Bell Laboratories,




PWB/UNIX Operations Manual (Second Edition)
A. G. Perruccelli

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

This manual contains a complete description of PDP® 11 console opera_tions. step-
by-step instructions for normal operator functions, as well as descriptions of the
PWB/UNIX system console error messages.

The information in this manual was gathered from personal experience, the
PWBIUNIX User’s Manual, Digital Equipment Corporation (DEC?®) hardware manu-
als. and technical memorandums contained in Documents for PWBIUNIX.

Because this manual is intended to be as general as possible, it is suggested that each
location add specific information about:

e Hardware configuration.

e Telephone line configuration.

o Specific logging and record-keeping practices.
e Contacts for hardware and software problems.
e Site-dependent diagnostic procedures.

This manual is partially based on, and supercedes the PWB/UNIX Operations Manual
by M. E. Peariman. -

e
//50



[ 4

Repairing Damaged PWB/UNIX

-File Systems

P. D. Wandzilak

March 1978

Bell Telephone Laboratories, Incorporated

§4G T
1.4



234

/
@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GE] 13.9-3)

Title: Interprocess Communication Mechanisms in Date: November 21, 1977
' CB-UNIX
% T™: 77-5223-1
v Other Keywords: UNIX File System 5223-771121.01TM

Pipes
Named Pipes
Signals
Semaphores
MAUS
Messages

Author(s) Location Extension Charging Case: 49359-20

J. C. Kaufeld Jr. CB 2C-249 4522 Filing Case: 49075-01

ABSTRACT

A discussion of interprocess communication mechanisms in CB-UNIX' is presented. In
particular: files, pipes. named pipes, signals, semaphores, MAUS and messages are dis-
cussed. For each mechanism, a general explanation is given, the user interface is detailed
and then limitations and potential problems are presented. The discussion applies
specifically to CB-UNIX, a version of the UNIX operating system developed in Columbus
for use in real-time oriented applications. The explanations do not necessarily apply o
UNIX operating systems in general, however, most versions of the UNIX operating system
have very similar implementations of files, pipes, signals and messages.

ERRATTA

This memo is a corrected copy issued June 19, 1978. This copy corrects a number of
misleading comments and outright errors. In addition, references to the CB-UNIX program-
mers manual are corrected to refer to the correct section number.

C

Pages Text: 22 Other: 1 Towal: 23

No. Figures: 0 No. Tables: 0 No. Refs.: §

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST



| /239 :

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIXT operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12, 1978

-() tUNIX is a Trademark of Bell Laboratories.



— VP %

@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained heremn s for the use of employees of Bell Laboratories and 1s not for publicanon. (See GEI 13. 9-3)

% Title- The MERT Operating System Date- March 22,1978

TM- 78-3114-3

78-1352-3
Other Keywords- UNIX
Real-Time
Multi-Environment
Interprocess Communication
Author Location Extension éharging Case- 39394
H. Lycklama HO 1G-317 3212 Filing Case- 39394-11
D. L. Bayer MH 7C-207 3080
ABSTRACT

The MERT operating system+ supports multipie operating system
environments. Messages provide the major means of inter-process communica-
tion. Shared memory is used whers tighter coupling between processes was
desired. The file system was designed with real-time response being a major s
concern. The system has been implemented, on the DEC PDP-11/45 and
PDP-11/70 computers and supports the UNIX time-sharing system as well as
some real-time processes.

The system is structured in four layers. The lowest layer, the kernel, pro-
vides basic services such as inter-process communication, process dispatching,
and trap and interrupt handling. The second layer comprises privileged
processes, such as [/O device handlers, the file manager, memory manager, and
system scheduler. At the third layer, the supervisor processes provide the pro-
gramming environments for application programs of the fourth layer. To pro-
vide an environment favorable to applications with real time response require-
ments, processes are permitted to control scheduling parameters such as
scheduling priority and memory residency. A rich set of inter-process com-
munication mechanisms including messages, events (software interrupts),
shared memory, inter-process traps, process ports, and files, allow applications
to be implemented as several independent, cooperating processes.

Some uses of the MERT operating system are discussed. A retrospective
view of the MERT system is also offered. This includes a critical evaluation of
some of the design decisions and a discussion of design improvements which

-/9 could have been made to improve overall efficiency.
> ?,\:-A ¢ . - - . - . . . .
’f A modified version ol this memorandum was submitted for publication in the special issue of the BSTJ on

Software. July-August, 1978.
UNIX is a Trademark of Bell Laboralories.

Pages Text 23 Other 5 Total 28

No. Figures 4 No. Tables 0  No. Refs. 13

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST




®

o227

Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication.

(See GEI 13.9-3)

Title-

A Minicomputer Satellite Processor System + Date- March 22,1978

T™- 78-3114-2

78-1359-3

Other Keywords- UNIX

Operating Systems

Minicomputer Support

Microprocessors
Author Location Extension Charging Case- 39394
H. Lycklama HO 1G-317 3212 Filing Case- 39394-11
C. Christensen MH 7C-217 4441

ABSTRACT

A software support system+ for a network of minicomputers and micro-
computers is described. A powerful time-sharing system on a central computer
controls the loading, running, debugging and dumping of programs in the satel-
lite processors. The fundamental concept involved in supporting these satellite
processors is the extension of the central processor operating system to each
satellite processor. Software interfaces permit a program in the satellite proces-
sor to behave as if it were running in the central processor. Thus, the satellite
processor has access to the central processor’s 1/0 devices and file system yet
has no resident operating system. The implementation of this system was con-
siderably simplified by the fact that all processors, central and satellite, belong
to the same family of computers (DEC PDP-11 series). We describe some
examples of how the SPS system is used in various projects at Bell Labora-
tories.

A modified version of this memorandum has been submitted for publication in the special issue of the
BSTJ on Software, July-August, 1978.

Pages Text 7

No. Figures 2

Other 3 Total 10
No. Tables 0 No. Refs. 8

E-1932-U (6-73)

SEE REVERSE SIDE FOR DISTRIBUTION LIST




191
R UNSD

Bell Laborateries

Subject: Recommendations for A Company-Wide UNIX* daze: June 6, 1
Education Program
from: R. ¥I. Coben

E. H. Dudley
R. A. Faulkner
R. F. Graveman
B. W. Kernighan
R. D. Reese

. F. Rosin

R

D. S.

G. C. Vogel
G. A. Wilson
B. C. Wonsiewicz

ABSTRACT

Bell Laboratories has become heavily commitied to the UNIX time-sharing sysiam. its
associated utilities, and the programming language C. Although current efforts in UNIX aduca-
tion are extensive, they tend to be disorganized. redundant. and incomplete. The Ad Hoc
UNTIX Education Comrnittae was chartared 10 recommend 2 solution to Lh:s problem. addrass-
ing specifically the needs of the technicai population.

Our committes ecommends that a new supervisory group oe formed whose sole concern
will be the many aspects of UNIX education. This supervisory group should be aligned with a
ceatral UNIX system support organization.

This report presents an overview of the use of UNIX at Bell Laboratories, our view of the
challenge for UNIX education, and our specific recommendations. Appendicss to this raport
cover these topics in detail and inciude tentative recommendations for course modules and out-
lines. ’

*UNIX is a Trademark of Beil Laboratories



ettt e il 8 A e 2 & S i e . e i e il el S Sl

130
Bell Laboratories UNDS

subject: Exercises in Repairing PWB/UNIX date: October 19, 1978
File Systems
File: 39382-900 from: p, D, Wandzilak

PY Qu42
1A-114 xT344

MEMORANDUM FOR FILE

"1. INTRODUCTION

This document describes a tool that generates a series of self-
instructional exercises based on the concepts presented in refer-
ence [3]. The tool is an interactive PWB/UNIX* program that
simulates the various degrees of file structure damage that are
presently reported by the check(VIII) command. The workshop
exercises are intended to provide users with the necessary frame-
work that will enable them to become more proficient in repairing
a damaged PWB/UNIX file system.

I assume that the reader has an understanding of the descriptions
in references (11, [2], and [3]. I also recommend that copies of
this document and reference (3] te periodically consulted for
detailed explanations and orocedures on resolving the more com-
plicated exercises that might be generated in using this tool.

5. BASIC CAPABILITIES’

Fsrepair is an interactive PWB/UNIX program that selectively
alters the structure of a consistent file system to contain one
or more of the various degrees of file structure damage that are
currently reported by check. The tool allows the individual to
concentrate on the problem area(s) to which he or she needs more

”*exposure. Figure 1 contains a complete list of all the file sys-

tem damage that is generated by this program.
A. Block Diagnostics

Mnemonic Identifier Description

bad The blcck number contains a value
outside the allowable space on the
file system.

. # UNIX is a Trademark of Bell Laboratories.




:_—_ | UNDS /320

Bell Laboratories

" subject: Setting Up UNIX/TS date: Scptember 30, 1978

from: R. C. Haight
MH 8234
2F211 x7498
MF 78-8234-98

L. A. Wehr
MH 8234
2F245 x4896
MF 78-8234-98

MEMORANDUM FOR FILE

The attached document describes programming steps for generating a UNIX/TS operating sys-
tem along with administrative detail on configuration, setting up file systems, and
installation/recompilation of command software.

R. C. Haight

MH-8234-RCH/LAW L. A. Wehr




UNOS 1335

@ Bell Laboratories ~ Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)

.*,-v.:‘,_._ Title- UNIX File Security Date- January 19, 1979
7&& : ™. 79-1271-3
Other Keywords- Privacy
Encryption
} Secret Writing -
N Author Location Extension Charging Case- 39199
Robert Morris MH 2C524 3878 Filing Case- 39199-11
ABSTRACT

This paper describes the history of the design of the file encryption
scheme on the UNIX time-sharing system. The present design was the result
of countering observed attempts to penetrate the system. The result is a well-
understood scheme that is fast and easy to use.

Pages Text 6 Other 1 Total 7
No. Figures 0 No. Tables 0 No. Refs. 10

E-1932.U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST




UNOS 1345
@ Bell Laboratories ~ Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)

. Title- An Essay in Computer Security: Decrypting A Former Date- December 29, 1978
UNIXtT crypt

T™™- 78-1271-20

Other Keywords- Ciphers

Author Location Extension Charging Case- 39199
P.J. Weinberger MH2C-514 7214 Filing Case- 39199-11
ABSTRACT

Users of computer systems need some way of keeping their files private
from non-privileged users sharing the same machine. On UNIX at least, relying
on the file protection mechanism decreases the amount of legitimate sharing
which is possible, and leaves the file readable on dump tapes. A series of
encryption schemes have been tried on the Center 127 system. The next-to-
last of these, used from March to December of 1978, seems to be quite satis-
factory for small files However, the techniques discussed in this memo gen-
erally recover at least 70% of the plain text of the file given about 11000 char-
acters of enciphered text. The cryptanalysis algorithm takes about two minutes
of processor time. Another 10 minutes of human intervention usually com-
pletely decrypts the text.

tUNIX is a Trademark of Bell Laboratories.

TM=-78-1271-20
Pages Text 35 Other 0 Total 5 cM
BIREN,IRMR B ;
No. Figures 0 No. Tables 0 No. Refs. 0 MH2F 128 01/31/7¢

| SUBJECT MATChH COCSES
E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIS1




l.'Uf ) }35.5
@ Bell Laboratories Cover Sheet for Technical Memorandum UNPL

The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)

- ;
\ "Title- Semantics of the C programming language, Date- January 2, 1979

L ) part 0: prelude ™: 79-1271-2

Other Keywords-

Author Location Extension Charging Case- 39199
Ravi Sethi MH 2C-519 4006 Filing Case- 39199-11
ABSTRACT

This is the first of a sequence of papers defining the semantics of the C
programming language. Of the three methods — operational, denotational, and
axiomatic — that have been used to specify the semantics of reasonably com-
plete languages, the denotational method has been chosen to specify C. In this
prelude, a very simple language with assignments and while loops will be used
to illustrate the semantic method.

Text 23 Other 7 Total 30 s
i \i\u.\a\.i\w \-Ul"_I
No. Figures 10 No. Tables 0 No. Refs. 59

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST



— @ unos 1353

= Bell Laboratories

subject: UNIX Command Syntax date: February 16, 1979

Filing Case 40125-001 from: A. S. Cohen
MH 2524
2F-223 x6920

S. B. Olsson
MH 2524
2C-253 x3474

G. C. Vogel
MH 2524
2C-158 x6115

2524-79-021Ff-02MF

ABSTRACT

The current UNIX™ command-line syntax is riddled with inconsistencies.
Command-syntax rules and a library routine for achieving consistent syntax are pro-
posed.

MEMORANDUM FOR FILE

There are now thousands of Bell Labs employees using UNIX™ time sharing systems. Many
of these people are occasional users who are unfamiliar with the internal workings of the sys-
tem, the many features of the shell, the historical development of the system, or the quirks of
the command syntax.

Consider the following command lines:

'FQ lpr =1 —m wlist
' lpr —cm zlist
tp tml gold
pr —h "Grocery List" —5 —w100 glist

A user might reason from the first two lines that options may be grouped for convenience. The
third line suggests a command syntax in which the command modifiers (options or keys) need
not be prefixed by a *=". Finally, the last line displays a mixture of options taking arguments.
}0 The ‘h’ option allows white space before its argument, the ‘w’ option allows its argument to be

adjacent, and the ‘=’ takes its argument without white space. One is apt to feel that, in spite
of the variety, the command syntax is quite liberal.

This Cocument Contains Proprietary 4
| Informatian of Eoll Telephene Laboratsrize
Ard I3 flet To Be Reproduczd Or Fubliz o
Without Zefl Laboratcries Azzroval, 4




®

Source Code Control System

User’s Guide

L. E. Bonanni
C. A. Salemi

Bell Telephone Laboratories, Incorporated

Vi s F
7 /PO



UNDS /369

Sdb: A Symbolic Debugger

Howard P. Karseff

Bell Laboratories
Holmdel, New Jersey 07733

1. Introduction

This document descr:bes a symbolic debugger, sdb, as implemented for C and F77 pro-
\ grams on the UNIX/32v?t Operating System. Sdb is useful both for examining core images of

aborted programs and for providing an environment in which execution of a program can be
monitored and controlled.
2. Examining core images

In order to use sdb. it is necessary to compile the source program with the ‘—g’ flag. This
causes the compiler to generate additional information about the variables and statements of
the compiled program. When the debug flag is specified. sdb can be used to obtain a trace of
the called procedures at the time of the abort and interactively display the values of variables.

2.1. Invoking sdb
A typical sequence of shell commands for debugging a core image is:

(‘ % cc —g foo.c —o foo
"% foo
Bus error — core dumped
% sdb foo

main:25: x[i] = 0;

*

The program foo was compiled with the *—g’ flag and then executed. An error occurred
which caused a core dump. Sdb is then invoked to examine the core dump to determine the
cause of the error. [t reports that the Bus error occurred in procedure main at line 25 (line
numbers are always relative to the beginning of the file) and outputs the source text of the
offending line. Sdb then prompts the user with a "+’ indicating that it awaits a command.

It is useful to know that sdb has a notion of current procedure and current line. In this

y. example, they are initially set to “main’ and ‘25" respectively.
' i [n the above example sdb was called with one argument, “foo’. In general it takes three

arguments on the command line. The first is the name of the executable file which is to be
debugged: It defaults to a.out when not specified. The second is the name of the core file,
defaulting to core and the third is the name of the directory containing the source of the pro-
gram being debugged. Sdb currently requires all source to reside in a single directory. The
default is the working directory. In the example the second and third arguments defaulted to
the correct values, so only the first was specified.

[t is possible that the error occurred in a procedure which was not compiled with the
debug flag. [n this case, sdb prints the procedure name and the address at which the error
occurred. The current line and procedure are set to the first line in main. Sdb will complain if
main was not compiled with '—g’ but debugging can continue for those routines compiled with

1.UNI?( is a trademark of Bell Laboratories




LLAL O

&

Bell Laboratories
subject: ysing UNIX Capabiiities More gate:Jan. 30, 1979
Effectively.
Fiie: 383857-32 fomW. J. Mayer
HO 5113

20624 x2305
511i3-790130.014F

ARSTRACT

A new UNIX program is introduced in this memo that allows
convenient transfer of data between UNIX and non-UNIX time shared
systems. Although standard UNIX software provides communications
with other UNIX systems and with some other BTL batch processors,
direct data transiers with non-UNIX time shared systems have not
previousiy been possible in a suitably convenient manner.

This new pregram makes it feasible to compiement the capa-
bilities of other systems with the capabiiities that are unique
te UNIX. UNIX can now be used to prepare source data for another
system, run a program with the prepared input and have th2 output
sent back to UNIX for further processing. Or, UNIX can act as
the "middie man" te transfer data, with or without editing,
between two other systems that may have no other convenient means
of communications.

The pregram is currentiy being used as a iink between EISS
(Ecenomic Impact Study System) and the I3Y batch processing
(through UNIX) and as a 1ink between UNIX and TASP (Toll Alterna-
tives Studies Program) at the ATsT, Piscataway computer facility.

Copy to
(Witheout att, III)
All Supervision Center 511
W. J. Bebio
+ R. Hackett
T. Lee
A. Norden
M. Rees -
« L. Russeil

H2ua4h

£y "
F v § '«



= I UNPL 1370
@ Bell Laboratories  Cover Sheet for Technical Memorandum

The informanon conzined herein is for the use of employees of Bell Laborarories and is not for publication. (See GEI 13.5

Title- Semantics of the C programming languags, Date- February 2, 1979

part 1: statements
\ ' ™ 79-1271-04

Qther Keywords-

‘ Author Location Extension Charging Case- 39199
A Ravi Sethi MH 2C-519 4006 Filing Case- 39199-11
"-—-& | i

ABSTRACT

This is one of a sequence of papers defining the semantics of the C pro-
gramming language. After providing a brief introduction to the semantic
method, the semantics of statements are given in section 3. Section 3 was
prepared by adding denotational semantics for the various statements to the dis-
cussion in section 9 of the C Referenc= Manual, as it appears in: B. W. Ker-
nighan and D. M. Ritwchie, The C Programming Language, Prentics-Hall, Engle-
wood Cliffs, NJ, 1978. The work reported here was carried out with the
cooperation of F. T. Grampp and A. R. Koenig.

Cowde. Jthectinman
WIS G- Y

Pages Text Other 10 Toual 28

=

4 O

No. Figures No. Tables ¢ No. Refs. ¢




