
Unix: Building a Development Environment

from Scratch

Warren Toomey

Abstract In April 1969, as part of AT&T’s withdrawal from the Multics project,

the researchers involved had their “pleasant” development environment taken from

them. Bereft of their “toy”, the ex-Multics researchers began to cast about for a re-

placement. Having found nothing suitable, Ken Thompson chose to write one from

scratch. By the middle of 1969, he had created a self-hosting operating system on a

discarded PDP-7 minicomputer. This was Unix, an operating system whose legacy

remains with us today. This paper looks at the creation of Unix after AT&T’s depar-

ture from the Multics project, the features and innovations in the PDP-7 version of

Unix, and the work done in 2016 to restore a working version of PDP-7 Unix from

the available source code.

1 The Motivation behind Unix’s Development

1969 was not a good year for the Bell Labs researchers at AT&T who were involved

in the Multics project. Multics was an attempt to refine and extend many of the

contemporary ideas in operating systems (e.g. virtual memory, multitasking) and to

build an operating system utility with “a view of continuous operation analogous to

that of the electric power and telephone companies” [3].

The Multics designers had set an ambitious list of features for the system, includ-

ing:

• Virtual, segmented memory, so that a process could access more memory than

physically available on the system

• File-mapped memory, for persistent storage of in-memory data structures

• A hierachical filesystem with multiple names for files, symbolic links, quotas on

storage and the support for (de)mountable devices

Warren Toomey
The Unix Heritage Society & TAFE Queensland, e-mail: wkt@tuhs.org

1

2 Warren Toomey

• The use of a high-level language to implement the system

• Dynamic linking for executables

• User accounting, administration and security

But Multics was beginning to suffer from Brooks’ “second system effect” [2]: it

was over-engineered and too ambitious to meet all of these goals on the hardware

platform that it was designed for, the General Electric GE-645.

AT&T had joined the Multics project in 1964, along with General Electric and

MIT. By April of 1969, with the project behind schedule, AT&T decided to with-

draw from Multics. This left the Bell Labs researchers involved in Multics (Ken

Thompson, Dennis Ritchie, Doug McIlroy among others) at a loose end. Sandy

Fraser describes the situation at Bell Labs in an interview with Mike Mahoney [6]:

It was quite clear that we were in the course of fairly traumatic change for a lot of peo-
ple. ... The toy [the GE-645] had gone. The computer room was empty. People were just
despondent. Some people were leaving. There was a clear lack of momentum.

Having been burned once with an operating system project, AT&T management

were not keen to see further research work done on operating systems. But the re-

searchers themselves had found the Multics system to be a wonderful development

environment and they were keen to work on a suitable replacement. Ritchie notes

that [4]:

Even though Multics could not then support many users, it could support us, albeit at exor-
bitant cost. We didn’t want to lose the pleasant niche we occupied, because no similar ones
were available. ... What we wanted to preserve was not just a good environment in which to
do programming, but a system around which a fellowship could form.

The Multics researchers at the Labs tried several times to persuade AT&T manage-

ment to purchase a more modest computing platform on which they would write

an operating system, but in retrospect these proposals required AT&T “to spend too

much money on too few people with too vague a plan” [12]. Ultimately, all of these

plans were rejected.

During this dark period, Thompson was engaged in two activities that would

lead to the development of the Unix operating system. The first was the creation of

“Space Travel”, an accurate simulation of the Sun, planets and moons in the solar

system. A player of the simulation could navigate a space ship around the solar

system, view the scenery and attempt to land on the planets and moons therein.

“Space Travel” was initially developed on the GE-645 platform, but it was ex-

pensive to run ($75 for the CPU time to run one game [12]) and its command-line

interface left much to be desired. After the withdrawal from the Multics project,

Thompson rewrote “Space Travel” for the PDP-7, a smaller computer at the Labs

which had been used for graphical work but which was now outdated and surplus to

requirements.

This work introduced Thompson to the PDP-7 platform, one which was severely

constrained both in memory (with only 8,192 18-bit words) and disk space (with

storage of only 1,024,000 words), and with an obtuse instruction architecture. These

restrictions would ultimately influence the design of the Unix system.

Unix: Building a Development Environment from Scratch 3

2 The Unix Filesystem

The second activity that Thompson was engaged in after the demise of the Multics

project was research into filesystem design and structure. Thompson had started this

work even before AT&T has formally withdrawn from the Multics project.

I had built ... a high level simulation of [a] whole file system. It was never down to the point
of where you put the addresses, how you expand files and things like that. It was always at
some higher level. I think it was just like one or two meetings, Dennis [Ritchie] and [Rudd]
Canaday and myself. Was just discussing these ideas of the general nature of keeping the
files out of each other’s hair and the nitty-gritty of ... where you put block addresses. [5]

From this high-level simulation of a filesystem, Thompson took the PDP-7 and be-

gan to implement the filesystem’s structure. Initially, this was still a simulation of

files and actions on these files, but as time progressed the simulation system was

fleshed out into a working operating system.

To run the file system you had to create files and delete files, re-unite files to see how well
it performed. To do that you needed a script of what kind of traffic you wanted on the file
system, and the script we had was ... [a] paper tape that said: read a file, read a file, write a
file, this kind of stuff. And you’d run the script through the paper tape and it would rattle the
disk a little bit. You wouldn’t know what happened. You just couldn’t look at it, you couldn’t
see it, you couldn’t do anything. [Then] we built a couple of tools on the file system. We
used this paper tape to load the file system with these tools, and then we would ... type at
the tool that was called a “shell”, by the way, to drive the file system into the contortions
that we wanted it to measure how it worked and reacted. So [the primitive filesystem] lasted
by itself for maybe a day or two before we started developing the [tools] that we needed to
load it. [5]

In the 21st century, we see operating systems rightfully as extremely complicated

systems, requiring hundreds of developers and thousands of hours to build. In the

20th century, Thompson did not know this. Instead, in the summer of 1969

My wife went on vacation to my family’s place in California to visit my parents. ... She was
gone a month to California and I allocated a week each to the operating system [kernel],
the shell, the editor, and the assembler, to reproduce itself. During the month she was gone,
it was totally rewritten in a form that looked like an operating system, with tools that were
sort of known: [an] assembler, an editor and a shell. If not maintaining itself, right on the
verge of maintaining itself. [5]

In a month of spare time, Ken Thompson had taken a file system simulator and

rewritten it into a self-hosting operating system which we now know as PDP-7 Unix.

2.1 Filesystem Structure

Right from the beginning, the structure of the PDP-7 Unix filesystem had the hall-

marks that it would retain for the rest of its life (as shown in Figure 1):

• information nodes (inodes) that contain the metadata about each file

4 Warren Toomey

• separate directories of filenames, each of which points to an inode, and

• a set of disk blocks that store the contents of each file

The inode could store up to seven disk block numbers, for files up to 7∗64 = 448

words in length. For files bigger than this, the file was marked in the flags field as

a large file. In this situation, the block numbers pointed to disk blocks that each

contained 64 actual disk block numbers, allowing files up to 7 ∗ 64 ∗ 64 = 28,672

words in length.

The flags field in the inode also identified the file type as a true file, a directory or

a special file, and the permissions on the entry: read and write for the file’s owner,

read and write for all other users. The owner of a file was identified by the user-id

field; the concept of user groups would not arrive for a few more years.

One innovation in the PDP-7 Unix filesystem design was the concept of hard

links. As the name of a file was separated from the metadata in the inode, this al-

lowed two or more filenames to point to the same metadata, as shown in Figure 2.

Each filename linked to the inode was equipotent: no filename was less or more

important than any of the other linked filenames. The numlinks field in the inode

recorded the number of filenames linked to the actual file; only when all filenames

were unlinked and the link count dropped to zero was the file deleted from the

filesystem.

Fig. 1 Inode Structure in PDP-7 Unix

Fig. 2 Hard Links in PDP-7 Unix

Unix: Building a Development Environment from Scratch 5

2.2 Directories

While the organisation of the files’ content and metadata in PDP-7 Unix was fairly

well defined from the beginning, the same cannot be said for the organisation of the

directories and their relationship to each other.

The first [filesystem design] was [not a hierarchy of directories but] a directed graph, and
we did not restrain it to a tree. We were experimenting with various topologies. [5]

The PDP-7 Unix kernel understood and dealt with the concept of directories (con-

tainers for related filenames), and that a directory could contain links to other direc-

tories. However, it was agnostic to the arrangement of these directories.

The earliest Unix filesystem, and the one that survives in the restored PDP-7

Unix system, contained two top-level directories, dd and system, as shown in Fig-

ure 3. The dd directory contained entries for the system directory and all the user’s

home directories. The system directory contained all the main executable files on

the system and the special device files. Today, dd would be recognised as the root

directory, and system as a combination of the /bin and /dev (binaries and device files)

directories.

To navigate around the filesystem, each directory needed to have an entry back to

the dd directory. And as the shell was hard-wired to search for executable binaries

in the system directory, each directory also needed an entry pointing to the system

directory.

In PDP-7 Unix, the concept of absolute pathnames such as /usr/local/bin/less

did not exist, nor did the concept of relative pathnames (e.g. ../../file or sub-

dir1/subdir2/file). Once a user had moved into a directory, they could only reference

files and directories that were visible in that directory.

To obviate this limitation, users could link (add a name) to an existing file so that

it was visible in the current directory. Ritchie notes that [12]:

The link operation took the form

ln dir file newname

where dir was a directory file in the current directory, file an existing entry in that directory,
and newname the name of the link, which was added to the current directory. Because dir

needed to be in the current directory, it is evident that today’s prohibition against links to
directories was not enforced; the PDP-7 Unix file system had the shape of a general directed
graph.

So that every user did not need to maintain a link to all directories of interest, there existed
a directory called dd that contained entries for the directory of each user. [If I was in my
home directory dmr], to make a link to file x in directory ken, I might do

ln dd ken ken Create a link to the ken directory in this directory
ln ken x x Create a link to ken’s x file in this directory
rm ken Remove the now-unneeded link to the ken directory

This scheme rendered subdirectories sufficiently hard to use as to make them unused in
practice.

6 Warren Toomey

The dd convention made the chdir command relatively convenient. It took multiple argu-
ments, and switched the current directory to each named directory in turn. Thus

chdir dd ken

would move [from the dmr directory via the dd directory] to directory ken.

In PDP-11 Unix (written in 1971), the dd entry in every directory evolved into the

.. (dot dot) entry which points to the directory immediately above it. The extra

memory available on the PDP-11 allowed the kernel to support absolute and relative

pathnames; once the shell could find executables in the /bin directory, the system

entry in each directory was no longer required.

2.3 File Operations and Special Files

PDP-7 Unix implemented a set of file operations that would be immediately recog-

nised by a current Unix or Linux systems programmer:

dd

system

ken

dmr

system

dd

as

cat

chmod

cp

display

keyboard

...

ken

dd

system

s1.s

s2.s

...

dmr

dd

system

as.s

bi.s

hello.b

...

Fig. 3 Directory Structure in PDP-7 Unix

Unix: Building a Development Environment from Scratch 7

File Operation Description

file descriptor = open(filename, mode) Open a file read-only or read-write

close(file descriptor) Close an open file

read(file descriptor, buffer, amount) Read amount words from an open file

write(file descriptor, buffer, amount) Write amount words into an open file

seek(file descriptor, amount, whence) Move to a specific position in an open file

In this way, the Unix kernel abstracted the storage details of a file and replaced it

with a linear array of PDP-7 words (bytes in later Unix versions). PDP-7 Unix also

extended this abstraction by introducing the concept of “special files”. Each special

file represented the contents of a physical device and could be accessed using the

above file operations, regardless of the device’s physical characteristics.

The PDP-7 Unix kernel supported these special device files stored in the system

directory:

• ttyin and ttyout, the PDP-7 console device

• keyboard and display, the Graphics-2 device which was used as a second terminal

• pptin and pptout, the paper tape device

Thus, on a system with only 8,192 words of memory, PDP-7 Unix was able to

provide a multitasking development environment for two users.

3 Processes and Process Control

PDP-7 Unix provided a multitasking environment by dividing the 8K words of

memory into two halves. The lower half of memory was reserved for the kernel.

The upper half of memory was set aside for the currently running process. PDP-7

Unix swapped processes between memory and disk as part of the context switch

between running processes. While this provided process isolation, the PDP-7 hard-

ware did not prevent the running process from accessing the lower 4K words of

kernel memory.

What we now know as the canonical Unix set of process control mechanisms

(fork(), exec(), exit() and wait()) evolved in stages as PDP-7 Unix was developed

and then rewritten for the PDP-11 platform.

3.1 Fork and Exec

Before working on Multics and the nascent Unix, Thompson had used the Project

Genie research system on the Scientific Data Systems (SDS) 930 computer as a Uni-

versity of Berkeley undergraduate. Project Genie’s main goal was to provide a time-

sharing “virtual machine” to a number of users; this included a two-level filesystem

where each user had their own directory of files. SDS took the Project Genie system

8 Warren Toomey

and modified the 930 hardware platform to better support it. The rebadged SDS 940

system became the first commercially successful timesharing system. Later, Xerox

Parc would purchase SDS and rebrand it as Xerox Data Systems, and many of the

Project Genie researchers would move to Xerox PARC. [17]

Fork() had been developed for Project Genie by Melvin Conway as one of a pair

of primitives, fork and join, to allow processes to be scheduled on a multiprocessor

system [7]. The fork primitive takes an existing process and creates a second exe-

cuting process, using the same executable code. The join primitive synchronises the

two processes that exist after the fork, leaving a single process.

Thompson borrowed the fork() concept from Project Genie: a PDP-7 Unix pro-

cess used fork() to create an identical copy of itself which could then be sched-

uled independently. While fork() allowed a system to start new processes, they are

all identical. Another primitive was needed to allow the system to run programs

which are different. In today’s Unix, this is the exec() mechanism, implemented by

the Unix kernel. In PDP-7 Unix, this mechanism was implemented in the shell (as

shown in Figure 4).

Once the PDP-7 shell read a command from the user to run a new program, it

firstly fork()ed a copy of itself; both the original and the new shells now executed

concurrently. The original shell waited for the new shell to execute and terminate.

The new shell then needed to overwrite itself with the program executable requested

by the user.

The execute function in the shell first relocated itself to the top of memory, just

under the arguments to the program given on the command line by the user. The

relocated function then open()ed the executable file and read() its contents into the

user memory starting at location 4,096. Once the executable had been loaded into

memory, the relocated function close()ed the file and jumped to location 4,096 to

start execution of the new program.

process arguments

relocated

execute function

execute function
new

executable

code

4096

8191

Disk

Memory

Fig. 4 The shell exec mechanism

Unix: Building a Development Environment from Scratch 9

Ritchie notes that even this simple process control mechanism evolved from a

more primitive construct [12]:

Process control in its modern form was designed and implemented within a couple of days.
It is astonishing how easily it fitted into the existing system; at the same time it is easy to see
how some of the slightly unusual features of the design are present precisely because they
represented small, easily-coded changes to what existed. A good example is the separation
of the fork and exec functions. The most common model for the creation of new processes
involves specifying a program for the process to execute; in Unix, a forked process contin-
ues to run the same program as its parent until it performs an explicit exec.

The separation of the functions is certainly not unique to Unix, and in fact it was present
in the Berkeley time-sharing system [Project Genie] which was well-known to Thompson.
Still, it seems reasonable to suppose that it exists in Unix mainly because of the ease with
which fork could be implemented without changing much else. The system originally han-
dled multiple (i.e. two) processes; there was a process table, and the processes were swapped
between main memory and the disk. The initial implementation of fork required only

1. Expansion of the process table

2. Addition of a fork call that copied the current process to the disk swap area, using the
already existing swap I/O primitives, and made some adjustments to the process table.

In fact, the PDP-7’s fork call required precisely 27 lines of assembly code. Of course, other
changes in the operating system and user programs were required, and some of them were
rather interesting and unexpected. But a combined fork/exec mechanism would have been
considerably more complicated, if only because exec as such did not exist; its function was
already performed, using explicit I/O, by the shell.

3.2 Exit and Wait

In today’s Unix systems, a process which has fork()ed a new process can wait() for

that process to terminate. The new process can exit() to terminate its execution, and

this returns an exit status value back to the original process which is wait()ing.

As with fork() and exec(), wait() and exit() evolved from other mechanisms. In

this case, the previous mechanisms were more, not less, sophisticated.

The primitives that became exit and wait were considerably more general than the present
scheme. A pair of primitives sent one-word messages between named processes:

smes(pid, message)

(pid, message) = rmes()

The target process of smes did not need to have any ancestral relationship with the receiver,
although the system provided no explicit mechanism for communicating process IDs except
that fork returned to each of the parent and child the ID of its relative. Messages were not
queued; a sender delayed until the receiver read the message.

The message facility was used as follows: the parent shell, after creating a process to execute
a command, sent a message to the new process by smes; when the command terminated
(assuming it did not try to read any messages) the shell’s blocked smes call returned an
error indication that the target process did not exist. Thus the shell’s smes became, in effect,
the equivalent of wait.

10 Warren Toomey

A different protocol, which took advantage of more of the generality offered by messages,
was used between the initialization program and the shells for each terminal. The initial-
ization process, whose ID was understood to be 1, created a shell for each of the terminals,
and then issued rmes; each shell, when it read the end of its input file, used smes to send
a conventional ‘I am terminating’ message to the initialization process, which recreated a
new shell process for that terminal.

I can recall no other use of messages. This explains why the facility was replaced by the
[exit and] wait calls of the present Unix system, which is less general, but more directly ap-
plicable to the desired purpose. Possibly relevant also is the evident bug in the mechanism:
if a command process attempted to use messages to communicate with other processes, it
would disrupt the shell’s synchronization. The shell depended on sending a message that
was never received; if a command executed rmes, it would receive the shell’s phony mes-
sage, and cause the shell to read another input line just as if the command had terminated. If
a need for general messages had manifested itself, the bug would have been repaired [12].

4 Utilities in Unix

Not only was PDP-7 Unix a versatile operating system whose kernel was squeezed

into 4K words of memory, its developers also created a number of important utilities

whose descendants are still in use today.

In Ritchie’s “Draft of the Unix Timesharing System” [11], written in 1971 when

both PDP-7 and PDP-11 Unix systems were in existence, he documented the com-

mands and utilities listed below. Only a few of these would be unfamiliar to a current

Unix user.

Command Description

as The assembler

b The B compiler

cat Concatenate files

chdir Change the current directory

chmod Change a file’s permissions

cp Copy a file

db The debugger

ed The text editor

ln Link a new filename to a file

mkdir Make a directory

mv Rename (move) a file

nm List the symbols in an executable

pr Print a file

rm Remove a file or directory

roff The text processor

sh The shell

tm Print time-related kernel information

un List unidentified symbols in an executable

Unix: Building a Development Environment from Scratch 11

Several of the utilities in PDP-7 Unix deserve a fuller coverage.

4.1 The Shell

PDP-7 Unix was the first operating system to provide a command-line user interface

which was replaceable by the user. Earlier systems such as CTSS and Multics had

command-line interpreters, but these were part of the “system” and could not be

changed or modified.

PDP-7 Unix was also the first system that provided “standard input” and “stan-

dard output” abstractions to its utilities. In essence, every process started with one

already open file for reading input, and another open file for sending output. By

default, these open files were connected to the user’s terminal.

The PDP-7 Unix shell provided mechanisms for the user to redirect these open

files to existing (or new) files, and also to special files. Ritchie notes that [12]:

the very convenient notation for I/O redirection, using the ‘>’ and ‘<’ characters, was not
present from the very beginning of the PDP-7 Unix system, but it did appear quite early.
Like much else in Unix, it was inspired by an idea from Multics. Multics has a rather
general I/O redirection mechanism [author’s note, see [8]] embodying named I/O streams
that can be dynamically redirected to various devices, files, and even through special stream-
processing modules. Even in the version of Multics we were familiar with, there existed a
command that switched subsequent output normally destined for the terminal to a file, and
another command to reattach output to the terminal. Where under Unix one might say

ls > xx

to get a listing of the names of one’s files in [the file] xx, on Multics the notation was [12]

iocall attach user output file xx

list

iocall attach user output syn user i/o

Even though this very clumsy sequence was used often during the Multics days, and would
have been utterly straightforward to integrate into the Multics shell, the idea did not occur
to us or anyone else at the time. I speculate that the reason it did not was the sheer size
of the Multics project: the implementors of the I/O system were at Bell Labs in Murray
Hill, while the shell was done at MIT. We didn’t consider making changes to the shell (it
was their program); correspondingly, the keepers of the shell may not even have known of
the usefulness, albeit clumsiness, of iocall. (The 1969 Multics manual [8] lists iocall as an
‘author-maintained,’ that is non-standard, command.) Because both the Unix I/O system
and its shell were under the exclusive control of Thompson, when the right idea finally
surfaced, it was a matter of an hour or so to implement it.

Pipes, another important Unix concept, would not arrive in the Unix system until

the 3rd Edition of PDP-11 Unix in 1973.

12 Warren Toomey

4.2 Text Processing with roff

One of the earliest uses of the Unix system, apart from research into operating sys-

tems, was as a document processing system. The evolution of the document process-

ing tool, roff, is interesting. It began life as J. Saltzer’s runoff tool, written in assem-

bly language for the CTSS operating system [15]. This had been rewritten by Doug

McIlroy in BCPL for the Multics operating system. In turn, this had been rewrit-

ten as roff (with reduced functionality) in PDP-7 assembly for PDP-7 Unix. Then,

to justify the purchase of a PDP-11 minicomputer, the Unix researchers rewrote

roff into PDP-11 assembly language to support the document processing needs of

AT&T’s Patent department. Current Linux users might regard “open source” as a

relatively new concept, but the sharing and development of source code has been an

important mechanism from the beginning of computing.

4.3 The B Compiler

As noted earlier, Thompson had written an assembler for the PDP-7 minicomputer

to make the Unix system self-hosting. The kernel and all the original utilities in

PDP-7 Unix were written in PDP-7 assembly. But the Unix developers saw the need

for higher level languages. Thompson notes that [12]:

[We wanted to write the system in a high-level language] right from the start... That was
a Multics influence. And just the complexity of maintaining the thing, we just knew that,
you can’t maintain something [in assembly, let alone] write it and get it going, [as] it will
evolve. ... PL/I [the high-level language used on Multics] was too high for us, or even the
simpler version of PL/I in Multics (a thing called EPL). After [PDP-7 Unix] was up, or,
simultaneous with Unix coming out, BCPL was just emerging and that was a clear winner
with both of us [i.e. Thompson and Ritchie]. Both of us were really taken by the language
and did a lot of work with it.

BCPL was a word-oriented systems language developed by Martin Richards at

Cambridge University [10], which was designed to be somewhat portable to other

machines and systems. As BCPL was still too “big” a language for the PDP-7,

Thompson took the essential structures from BCPL and wrote a bytecode interpreter

on the PDP-7 for an intermediate language which implemented these structures. He

then wrote a compiler that targeted this intermediate language, and created the B

language.

It was the same language as BCPL, but it looked completely different. Syntactically it was,
you know, a redo, [but the] semantics were exactly the same as BCPL. And in fact the
syntax of it was, if you didn’t look too close, you would say it was C. Because in fact it was
C, without types [12].

Very little of the use of the B language in Unix survives: just a few simple PDP-7

programs written in B. The B language, and its compiler, would evolve through a

number of stages into the C language [13]. Ritchie and Thompson would rewrite the

Unix: Building a Development Environment from Scratch 13

Unix kernel in the high-level C language in 1974 [14], thus achieving their goal to

write the system in a high-level language.

5 Restoring the PDP-7 Unix System

For many years, the PDP-7 Unix system was essentially a mythical beast. Although

its existence was documented [11, 16], none of the source code had survived ex-

cept the dsw command, posted by Dennis Ritchie to the net.unix-wizards Usenet

newsgroup in 1984.

As the founder of the Unix Heritage Society,1 I had spent a lot of time recovering

old Unix systems and restoring them to working order. Notable successes were the

first edition of PDP-11 Unix and the first C compiler [19]. But the PDP-7 Unix

system remained elusive.

In 2016, a long-time member of the Unix Heritage Society revealed that he pos-

sessed a printout of some of the source code to PDP-7 Unix, which he had copied in

the 1980s when he worked in the Research labs at AT&T. He was strongly encour-

aged to scan this in and make it available to the Society.

The source code to any computing system is, by itself, useless unless there is

an environment to convert the system into machine executables, and then an envi-

ronment to run these executables. In 2016, the PDP-7 was a distant memory and,

even if one was available, there was no assembler to convert the source code into

executable format.

Fortunately, Bob Supnik and a cohort of excellent developers had built SimH

[18], a simulator of many early computer systems including the PDP-7 and its pe-

ripherals. Once the PDP-7 Unix source code became available, a team of three (Phil

Budne, myself and Robert Swierczek) began the task of converting the source code

into a working system.

The first task was to write a new PDP-7 assembler, and this was started by myself

and completed by Phil Budne. We did have the source code for the PDP-7 Unix

assembler, but this was a “chicken and egg” situation where the assembler source

could not yet assemble itself.

With our assembler we could assemble source code into PDP-7 machine code but

not yet execute the machine instructions. We could not use SimH, as this simulates a

whole system; to execute any Unix code, we needed a full system: machine, kernel,

working and populated filesystem, and utilities. A bug in any of these would prevent

the entire system from working correctly.

Instead, we chose to implement a “user mode” simulator: one which implements

most of the PDP-7 machine instructions, and converts PDP-7 Unix system calls

into system calls to the underlying host OS. An example of a similar “user mode”

simulator is Wine [1]. Using this simulator, we could test our assembler and the

1 http://www.tuhs.org

14 Warren Toomey

source code to the original PDP-7 Unix utilities without worrying about the Unix

kernel or filesystem.

With confidence in the assembler and the utilities, we turned our attention to the

PDP-7 Unix kernel and the construction of a file system, i.e. the layout of inodes,

directories and file blocks. Phil Budne took on the task of getting the kernel to work,

and I wrote a tool to build a suitable filesystem. Both tasks were arduous. The Unix

developers had left very few comments in their assembly code, and PDP-7 instruc-

tions were foreign to all members of our team. We spent a lot of time deducing the

purpose of sections of assembly code, and adding comments and annotations to it.

The original tool to construct a PDP-7 Unix filesystem had been lost, and a re-

placement tool needed to be written. For myself, the complete lack of documentation

on the layout of the filesystem made the construction of a filesystem with directo-

ries and our compiled binaries difficult. Using what information we had at hand (the

kernel source code, documentation for the PDP-11 Unix system and the ability to

single-step instructions in SimH), I was eventually able to write a Perl script that

builds a working PDP-7 Unix filesystem. The script takes as input a text file that

describes the files and directories to be placed on the filesystem, the ownership and

permissions on the files and directories, and the links between the various directo-

ries. Using this information, the script generates a filesystem image that the PDP-7

Unix kernel can understand.

Phil Budne had similar difficulties with the PDP-7 Unix kernel. There was no

documentation on the Graphics-2 device, which had been built in-house at AT&T.

Not only did Phil have to deduce its modes of operation, he also had to add code to

SimH to simulate this device.

Ken Thompson had taken a month in 1969 to write the kernel, the assembler, the

shell and the debugger. Of these four crucial tools, the source code to the shell had

gone missing. Using the information provided by Ritchie in “The Evolution of the

Unix Timesharing System” [14], along with snippets of extant PDP-7 source code,

Phil Budne was able to heroically reconstruct a working shell for the PDP-7 Unix

system. Of the 525 lines of code in the reconstructed shell, only 14 lines of code

were borrowed from the original PDP-7 Unix init source code.

As the work on all of these threads finally came together, the team was able to

announce that the PDP-7 Unix timesharing system had been returned to full working

order; the original source code and the tools we used in the reconstruction are avail-

able for download on Github2. This includes several utilities for which the original

source code has gone missing: cp, ln, ls and mv.

In the background, Robert Swierczek had been working on the reconstruction of

the B compiler. Its source code also had been lost, but the bytecode interpreter for

the intermediate language had survived. Robert used the source code to the earliest

C compiler, removed the code dealing with types, and retargetted it to produce code

for the bytecode interpreter. In a masterpiece of reverse “bootstrapping”, Robert

wrote the B compiler so that it was at the same time valid B and C code, and so that

it could recompile itself. To build the compiler, first it is compiled using a modern

2 https://github.com/DoctorWkt/pdp7-unix

Unix: Building a Development Environment from Scratch 15

C compiler3. This not-yet-PDP-7 compiler is then used to compile the B compiler

source code (again), producing the intermediate language version which can be run

using the B interpreter on PDP-7 Unix.

PDP-7 Unix Element Original LOC Newly-written LOC

Kernel 2,812 0

Editor 1,290 0

Assembler 1,026 576

Shell unknown 525

Text Processor unknown 780

Utilities 5,930 1,340

Filesystem creator unknown 339

B Compiler unknown 825

6 Conclusion

The development of Unix was, in some ways, a reaction against the “bigger is better”

mentality of Multics. Thompson felt that [5]:

It was a good idea that we were getting out of Multics. That it was too big, too expensive,
too over-designed. It was just clear it was an exercise in building monstrosities.

But Unix was not solely a rejection of the Multics concept: indeed, many of the

ideas from Multics were simplified and added to Unix. Ritchie notes that [4]:

We were a bit oppressed by the big system mentality. Ken wanted to do something simple.
So Unix wasn’t quite a reaction against Multics, it was more a combination of these things.
Multics wasn’t there for us any more, but we liked the feel of interactive computing that
it offered. Ken had some ideas about how to do a system that he had to work out; and the
hardware available as well as our inclinations tended to trying to build neat small things,
instead of grandiose ones.

In time, the Unix operating system would espouse a design philosophy which has

been summarised by Doug McIlroy [9]:

This is the Unix philosophy: Write programs that do one thing and do it well. Write pro-
grams to work together. Write programs to handle text streams, because that is a universal
interface.

With the PDP-7 version of Unix, Thompson, Ritchie and others were still experi-

menting with the concepts and structures that would ultimately develop and crys-

tallise into this philosophy. Here, they are still grappling with the filesystem struc-

ture, the essential Unix process mechanisms, the features of the shell and the ability

to abstract device operations into generic file operations. The final two elements

that would provide Unix with its “toolbox” philosophy, pipes and a portable kernel,

would arrive in the following four years.

3 Many warnings are issued at this stage.

16 Warren Toomey

Using an outdated hardware platform, the PDP-7, and with only 8,192 words of

memory, Thompson and Ritchie were able to build a multitasking, multiuser operat-

ing system with a multi-directory filesystem. PDP-7 Unix would not only distill and

simplify many of the concepts from other systems (Multics, Project Genie), but it

would also introduce innovations such as hard links, devices represented as special

files and generalised I/O redirection. Many of the features, utilities and system calls

introduced in PDP-7 Unix are still in use today on its BSD descendants as well as

clean-room rewrites such as Linux. The legacy of this tiny operating system lives

on, nearly 50 years after its birth.

References

1. Amstadt, B., Johnson, M.K.: Wine. Linux Journal 1994(4es), 3 (1994)
2. Brooks, F.P.: The mythical man-month : essays on software engineering. Reading, Mass.

Addison-Wesley Pub. Co. (1975)
3. Corbató, F.J., Saltzer, J.H., Clingen, C.T.: Multics: the first seven years. In: American Feder-

ation of Information Processing Societies: AFIPS Conference Proceedings: 1972 Spring Joint
Computer Conference, Atlantic City, NJ, USA, May 16-18, 1972, pp. 571–583 (1972). DOI
10.1145/1478873.1478950

4. Mahoney, M.: Interview with Dennis Ritchie (1989). URL http://www.tuhs.org/

Archive/Documentation/OralHistory/transcripts/ritchie.htm

5. Mahoney, M.: Interview with Ken Thompson (1989). URL http://www.tuhs.org/

Archive/Documentation/OralHistory/transcripts/thompson.htm

6. Mahoney, M.: Interview with Sandy Fraser (1989). URL http://www.tuhs.org/

Archive/Documentation/OralHistory/transcripts/fraser.htm

7. Nyman, L., Laakso, M.: Notes on the history of fork and join. IEEE Annals of the History of
Computing 38(3), 84–87 (2016). DOI doi.ieeecomputersociety.org/10.1109/MAHC.2016.34

8. Project MAC: The Multiplexed Information and Computing Service: Programmers’ Manual.
Mass. Inst. of Technology, Cambridge MA (1969)

9. Raymond, E.S.: The art of Unix programming. Addison-Wesley Professional (2003)
10. Richards, M.: BCPL: A Tool for Compiler Writing and System Programming. In: Proceedings

of the May 14-16, 1969, Spring Joint Computer Conference, AFIPS ’69 (Spring), pp. 557–566.
ACM, New York, NY, USA (1969). DOI 10.1145/1476793.1476880

11. Ritchie, D.M.: Draft: The UNIX Time-sharing System (1971). URL http:

//www.tuhs.org/Archive/PDP-11/Distributions/research/McIlroy_

v0/UnixEditionZero-Threshold_OCR.pdf

12. Ritchie, D.M.: The Evolution of the Unix Time-Sharing System. In: Proceedings of a Sym-
posium on Language Design and Programming Methodology, pp. 25–36. Springer-Verlag,
London, UK (1980)

13. Ritchie, D.M.: The Development of the C Language. In: The Second ACM SIGPLAN Confer-
ence on History of Programming Languages, HOPL-II, pp. 201–208. ACM, New York, NY,
USA (1993). DOI 10.1145/154766.155580

14. Ritchie, D.M., Thompson, K.: The UNIX Time-sharing System. Commun. ACM 17(7), 365–
375 (1974). DOI 10.1145/361011.361061

15. Saltzer, J.H.: Manuscript Typing and Editing, 2nd edn., p. AH.9.01. MIT Press (1965)
16. Salus, P.H.: A Quarter Century of UNIX. ACM Press/Addison-Wesley Publishing Co., New

York, NY, USA (1994)
17. Spinrad, P., Meagher, P.: Project Genie: Berkeleys piece of the computer revolu-

tion (2009). URL http://www.coe.berkeley.edu:80/news-center/

publications/forefront/archive/forefront-fall-2007/features/

berkeley2019s-piece-of-the-computer-revolution

Unix: Building a Development Environment from Scratch 17

18. Supnik, B., Walden, D.: The Story of SimH. IEEE Annals of the History of Computing 37(3),
78–80 (2015)

19. Toomey, W.: The Restoration of Early Unix Artifacts. In: 2009 USENIX Annual Technical
Conference (USENIX ATC 09). USENIX Association, San Diego, CA (2009)

