
Slide 1/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

This program is part of the software suite
that accompanies the book

The Elements of Computing Systems
by Noam Nisan and Shimon Schocken

MIT Press

www.idc.ac.il/tecs

This software was developed by students at the
Efi Arazi School of Computer Science at IDC

Chief Software Architect: Yaron Ukrainitz

CPU Emulator Tutorial

http://www.idc.ac.il/tecs

Slide 2/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Background

The Elements of Computing Systems evolves around
the construction of a complete computer system,
done in the framework of a 1- or 2-semester course.

In the first part of the book/course, we build the
hardware platform of a simple yet powerful
computer, called Hack. In the second part, we build
the computer’s software hierarchy, consisting of an
assembler, a virtual machine, a simple Java-like
language called Jack, a compiler for it, and a mini
operating system, written in Jack.

The book/course is completely self-contained,
requiring only programming as a pre-requisite.

The book’s web site includes some 200 test
programs, test scripts, and all the software
tools necessary for doing all the projects.

Slide 3/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

The book’s software suite

This tutorial is
about the
CPU emulator.

Translators (Assembler, JackCompiler):
Used to translate from high-level to low-level;

Developed by the students, using the book’s
specs; Executable solutions supplied by us.

Other
Bin: simulators and translators software;

builtIn: executable versions of all the logic
gates and chips mentioned in the book;

OS: executable version of the Jack OS;

TextComparer: a text comparison utility.

(All the supplied tools are dual-platform: Xxx.bat starts
Xxx in Windows, and Xxx.sh starts it in Unix)

Simulators
(HardwareSimulator, CPUEmulator, VMEmulator):

Used to build hardware platforms and
execute programs;

Supplied by us.

Slide 4/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Tutorial Objective

Learn how to use the
CPU Emulator

for simulating the
execution of machine

language programs on
the Hack computer

Slide 5/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

The Hack computer

This CPU emulator simulates the
operations of the Hack computer,
built in chapters 1-5 of the book.

Hack -- a 16-bit computer equipped
with a screen and a keyboard --
resembles hand-held computers
like game machines, PDA’s, and
cellular telephones.

Before such devices are actually
built in hardware, they are planned
and simulated in software.

The CPU emulator is one of
the software tools used for
this purpose.

Slide 6/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

CPU Emulator Tutorial

I. Basic Platform

II. I/O devices

III. Interactive simulation

IV. Script-based simulation

V. Debugging

Relevant reading (from “The Elements of Computing Systems”):

Chapter 4: Machine Language

Chapter 5: Computer Architecture

Appendix B: Test Scripting Language

Slide 7/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

CPU Emulator Tutorial

Part I:

Basic Platform

Slide 8/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

The Hack Computer Platform (simulated)

Travel Advice:

This tutorial includes some examples
of programs written in the Hack
machine language (chapter 4).

There is no need however to
understand either the language or the
programs in order to learn how to use
the CPU emulator.

Rather, it is only important to grasp the
general logic of these programs,
as explained (when relevant)
in the tutorial.

Slide 9/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

instruction
memory

registers

keyboard
enabler

screen

data
memory

ALU

The Hack Computer Platform

Slide 10/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Instruction memory

Instruction memory
(32K): Holds a machine
language program

The loaded code can be viewed
either in binary, or in symbolic
notation (present view)

Program counter (PC) (16-bit):
Selects the next instruction.

Next instruction
is highlighted

Slide 11/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Data memory (RAM)

Data memory (32K RAM), used for:
General-purpose data storage
(variables, arrays, objects, etc.)
Screen memory map
Keyboard memory map

Address (A) register, used to:
Select the current RAM location

OR

Set the Program Counter (PC) for
jumps (relevant only if the current
instruction includes a jump directive).

Slide 12/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Registers

Registers (all 16-bit):

D: Data register

A: Address register

M: Stands for the memory register
whose address is the current
value of the Address register

M (=RAM[A])

D

A

Slide 13/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Arithmetic/Logic Unit

Arithmetic logic unit (ALU)
The ALU can compute various arithmetic
and logical functions (let’s call them f) on
subsets of the three registers {M,A,D}
All ALU instructions are of the form
{M,A,D} = f ({M,A,D})
(e.g. M=M-1, MD=D+A , A=0, etc.)
The ALU operation (LHS destination,
function, RHS operands) is specified by
the current instruction.

Current
instruction

M (=RAM[A])

D

A

Slide 14/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

CPU Emulator Tutorial

Part II:

I/O Devices

Slide 15/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

I/O devices: screen and keyboard

Simulated screen: 256 columns by
512 rows, black & white memory-
mapped device. The pixels are
continuously refreshed from respective
bits in an 8K memory-map, located at
RAM[16384] - RAM[24575].

Simulated keyboard:
One click on this button causes the
CPU emulator to intercept all the
keys subsequently pressed on the
real computer’s keyboard; another
click disengages the real keyboard
from the emulator.

Slide 16/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Screen action demo

1. Select a word in the RAM region
that serves as the screen memory
map, e.g. address 16384 (the first
word in the screen memory map).

2. Enter a value, say –1
(1111111111111111 in binary)

3. Built-in Refresh action:
The emulator draws the
corresponding pixels on the
screen. In this case, 16 black
pixels, one for each binary 1.

Perspective: That’s how computer
programs put images (text, pictures,
video) on the screen: they write bits into
some display-oriented memory device.

This is rather hard to do in machine
language programming, but quite easy
in high-level languages that write to the
screen indirectly, using OS routines like
printString or drawCircle, as we
will see in chapters 9 and 12.

Since all high level programs and OS
routines are eventually translated into
machine language, they all end up
doing something like this example.

Slide 17/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Keyboard action demo

1. Click the keyboard enabler

2. Press some key on the
real keyboard, say “S”

3. Watch here:

Keyboard memory
map
(a single 16-bit
memory location)

Slide 18/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Keyboard action demo

Keyboard memory
map
(a single 16-bit
memory location)

As long a key
is pressed,

The emulator displays
Its character code in the
keyboard memory map

Perspective: That’s how computer
programs read from the keyboard: they
peek some keyboard-oriented memory
device, one character at a time.

This is rather tedious in machine
language programming, but quite easy in
high-level languages that handle the
keyboard indirectly, using OS routines
like readLine or readInt, as we will see
in Chapters 9 and 12.

Since all high level programs and OS
routines are eventually translated into
machine language, they all end up doing
something like this example.

Visual echo
(convenient GUI
effect, not part of the
hardware platform)

Slide 19/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

CPU Emulator Tutorial

Part III:

Interactive
Simulation

Slide 20/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Loading a program

Navigate to a
directory and select
a .hack or .asm file.

Slide 21/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Loading a program

Can switch
from binary to
symbolic
representation

Slide 22/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Running a program

1. Enter a
number,
say 50.

2. Click the
“run” button.

4. Watch
here

3. To speed up
execution,
use the speed
control slider

Program’s description: Draws a rectangle at the
top left corner of the screen. The rectangle’s width
is 16 pixels, and its length is determined by the
current contents of RAM[0].

Note: There is no need to understand the program’s
code in order to understand what’s going on.

Slide 23/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Hack programming at a glance (optional)

Program action:
Since RAM[0] happens to be 50,
the program draws a 16X50
rectangle. In this example the
user paused execution when
there are 14 more rows to draw.

Program’s description: Draws a rectangle at the
top left corner of the screen. The rectangle’s width
is 16 pixels, and its length is determined by the
current contents of RAM[0].

Note: There is no need to understand the program’s
code in order to understand what’s going on.

Next instruction is M=-1.
Since presently A=17536, the next ALU
instruction will effect RAM[17536] =
1111111111111111. The 17536 address,
which falls in the screen memory map,
corresponds to the row just below the
rectangle’s current bottom. In the next screen
refresh, a new row of 16 black pixels will be
drawn there.

Slide 24/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Animation options

Animation control:
Program flow (default): highlights the
current instruction in the instruction memory
and the currently selected RAM location
Program & data flow: animates all
program and data flow in the computer
No animation: disables all animation

Usage tip: To execute any non-trivial program
quickly, select no animation. The simulator can

animate both program
flow and data flow

Controls execution
(and animation)
speed.

Slide 25/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

CPU Emulator Tutorial

Part IV:

Script-Based
Simulation

Slide 26/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Interactive VS Script-Based Simulation

A program can be executed and debugged:
Interactively, by ad-hoc playing with the emulator’s GUI
(as we have done so far in this tutorial)

Batch-ly, by running a pre-planned set of tests, specified in a script.

Script-based simulation enables planning and using tests that are:

Pro-active

Documented

Replicable

Complete (as much as possible)

Test scripts:
Are written in a Test Description Language (described in Appendix B)

Can cause the emulator to do anything that can be done interactively,
and quite a few things that cannot be done interactively.

Slide 27/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

The basic setting

tested program
test script

Slide 28/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Example: Max.asm

// Computes M[2]=max(M[0],M[1]) where M stands for RAM
@0
D=M // D = M[0]
@1
D=D-M // D = D - M[1]
@FIRST_IS_GREATER
D;JGT // If D>0 goto FIRST_IS_GREATER
@1
D=M // D = M[1]
@SECOND_IS_GREATER
0;JMP // Goto SECOND_IS_GREATER

(FIRST_IS_GREATER)
@0
D=M // D=first number

(SECOND_IS_GREATER)
@2
M=D // M[2]=D (greater number)

(INFINITE_LOOP)
@INFINITE_LOOP // Infinite loop (our standard
0;JMP // way to terminate programs).

// Computes M[2]=max(M[0],M[1]) where M stands for RAM
@0
D=M // D = M[0]
@1
D=D-M // D = D - M[1]
@FIRST_IS_GREATER
D;JGT // If D>0 goto FIRST_IS_GREATER
@1
D=M // D = M[1]
@SECOND_IS_GREATER
0;JMP // Goto SECOND_IS_GREATER

(FIRST_IS_GREATER)
@0
D=M // D=first number

(SECOND_IS_GREATER)
@2
M=D // M[2]=D (greater number)

(INFINITE_LOOP)
@INFINITE_LOOP // Infinite loop (our standard
0;JMP // way to terminate programs).

Hack language at a glance:

(label) // defines a label

@xxx // sets the A register
// to xxx’s value

The other commands are self-
explanatory; Jump directives
like JGT and JMP mean “Jump
to the address currently stored
in the A register”

Before any command involving
a RAM location (M), the A
register must be set to the
desired RAM address
(@address)

Before any command involving
a jump, the A register must be
set to the desired ROM
address (@label).

Note: For now, it is not necessary to understand either the Hack
machine language or the Max program. It is only important to
grasp the program’s logic. But if you’re interested, we give a
language overview on the right.

Slide 29/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Sample test script: Max.tst

RAM[0]	RAM[1]	RAM[2]
15	32	32
47	22	47

RAM[0]	RAM[1]	RAM[2]
15	32	32
47	22	47

The scripting language
has commands for:

Loading programs
Setting up output and compare files
Writing values into RAM locations
Writing values into registers
Executing the next command (“ticktack”)
Looping (“repeat”)
And more (see Appendix B).

Notes:

As it turns out, the Max program requires 14
cycles to complete its execution
All relevant files (.asm,.tst,.cmp) must
be present in the same directory.

Output

// Load the program and set up:
load Max.asm,
output-file Max.out,
compare-to Max.cmp,
output-list RAM[0]%D2.6.2

RAM[1]%D2.6.2
RAM[2]%D2.6.2;

// Test 1: max(15,32)
set RAM[0] 15,
set RAM[1] 32;
repeat 14 {
ticktock;

}
output; // to the Max.out file

// Test 2: max(47,22)
set PC 0, // Reset prog. counter
set RAM[0] 47,
set RAM[1] 22;
repeat 14 {
ticktock;

}
output;

// test 3: max(12,12)
// Etc.

// Load the program and set up:
load Max.asm,
output-file Max.out,
compare-to Max.cmp,
output-list RAM[0]%D2.6.2

RAM[1]%D2.6.2
RAM[2]%D2.6.2;

// Test 1: max(15,32)
set RAM[0] 15,
set RAM[1] 32;
repeat 14 {
ticktock;

}
output; // to the Max.out file

// Test 2: max(47,22)
set PC 0, // Reset prog. counter
set RAM[0] 47,
set RAM[1] 22;
repeat 14 {
ticktock;

}
output;

// test 3: max(12,12)
// Etc.

Slide 30/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Using test scripts

Execute the next
simulation step

Execute step after
step repeatedly

Pause the
simulation

Reset
the script

Load a
script

Script = a series of
simulation steps, each
ending with a semicolon;

Speed
control

Important point: Whenever an assembly
program (.asm file) is loaded into the
emulator, the program is assembled on the
fly into machine language code, and this is
the code that actually gets loaded. In the
process, all comments and white space are
removed from the code, and all symbols
resolve to the numbers that they stand for.

Slide 31/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

The default script (and a deeper understanding of the CPU emulator logic)

If you load a program file without first
loading a script file, the emulator
loads a default script (always). The
default script consists of a loop that
runs the computer clock infinitely.

Note that these run/stop buttons don’t
control the program. They control the
script, which controls the computer’s
clock, which causes the computer
hardware to fetch and execute the
program’s instructions, one instruction
per clock cycle.

Slide 32/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

CPU Emulator Tutorial

Part V:

Debugging

Slide 33/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Breakpoints: a powerful debugging tool

The CPU emulator continuously keeps track of:
A: value of the A register

D: value of the D register

PC: value of the Program Counter

RAM[i]: value of any RAM location

time: number of elapsed machine cycles

Breakpoints:

A breakpoint is a pair <variable, value> where variable is one of
{A, D, PC, RAM[i], time} and i is between 0 and 32K.

Breakpoints can be declared either interactively, or via script commands.

For each declared breakpoint, when the variable reaches the value, the
emulator pauses the program’s execution with a proper message.

Slide 34/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Breakpoints declaration

1. Open the
breakpoints
panel

3. Add, delete,
or update
breakpoints

2. Previously-
declared
breakpoints

Slide 35/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Breakpoints declaration

2. Enter the value
at which the break
should occur

1. Select the system
variable on which you
want to break

Slide 36/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Breakpoints usage

1. New
breakpoint

3. When the A register will be 2, or
RAM[20] will be 5, or 12 time units
(cycles) will elapse, or RAM[21] will
be 200, the emulator will pause the
program’s execution with an
appropriate message.

A powerful debugging tool!

2. Run the
program

Slide 37/40CPU Emulator Tutorial, www.idc.ac.il/tecs Tutorial Index

Postscript: Maurice Wilkes (computer pioneer) discovers debugging:

As soon as we started programming, we found to our
surprise that it wasn't as easy to get programs right
as we had thought. Debugging had to be discovered. I
can remember the exact instant when I realized that
a large part of my life from then on was going to be
spent in finding mistakes in my own programs.

(Maurice Wilkes, 1949).

http://images.google.com/imgres?imgurl=www.tcpc.org/resources/Templates/bugs.jpg&imgrefurl=http://www.tcpc.org/resources/conferences/conference_1999.html&h=184&w=274&prev=/images%3Fq%3Dbugs%26start%3D100%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN

	CPU Emulator Tutorial
	Background
	The book’s software suite
	Tutorial Objective
	The Hack computer
	CPU Emulator Tutorial
	CPU Emulator Tutorial
	The Hack Computer Platform (simulated)
	The Hack Computer Platform
	Instruction memory
	Data memory (RAM)
	Registers
	Arithmetic/Logic Unit
	CPU Emulator Tutorial
	I/O devices: screen and keyboard
	Screen action demo
	Keyboard action demo
	Keyboard action demo
	CPU Emulator Tutorial
	Loading a program
	Loading a program
	Running a program
	Hack programming at a glance (optional)
	Animation options
	CPU Emulator Tutorial
	Interactive VS Script-Based Simulation
	The basic setting
	Example: Max.asm
	Sample test script: Max.tst
	Using test scripts
	The default script (and a deeper understanding of the CPU emulator logic)
	CPU Emulator Tutorial
	Breakpoints: a powerful debugging tool
	Postscript: Maurice Wilkes (computer pioneer) discovers debugging:

