
Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 1

Chapter 8:

Virtual Machine II:
Program Control

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005 www.idc.ac.il/tecs

Usage and Copyright Notice:

Copyright 2005 © Noam Nisan and Shimon Schocken

This presentation contains lecture materials that accompany the
textbook “The Elements of Computing Systems” by Noam Nisan &
Shimon Schocken, MIT Press, 2005.

The book web site, www.idc.ac.il/tecs , features 13 such presentations,
one for each book chapter. Each presentation is designed to support
about 3 hours of classroom or self-study instruction.

You are welcome to use or edit this presentation for instructional and
non-commercial purposes.

If you use our materials, we will appreciate it if you will include in them a
reference to the book’s web site.

And, if you have any comments, you can reach us at tecs.ta@gmail.com

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 2

Virtual Machine
Part II: Program Control

Efi Arazi School of Computer Science Digital Systems Construction

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 3

Where we are at:

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 4

The big picture

. . .
RISC

machine

VM language

other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . . written in
a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler
Jack

compiler

. . .Some
language

. . .

Chapters
1-6

Chapters
7-8

Chapters
9-13

A Java-based emulator
is included in the course
software suite

Implemented in
Projects 7-8

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 5

Lecture plan

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands
pop segment i

push segment i

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands
pop segment i

push segment i

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Previous
lecture

This
lecture

Goal: Specify and implement a VM model and language

Method: (a) specify the abstraction (model’s constructs and commands)
(b) propose how to implement it over the Hack platform.

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 6

Program structure and translation path (on the Hack-Jack platform)

class Foo {
static staticsList;
method f1(argsList) {

var localsList;
...

}
method f2(argsList) {

var localsList;
...

}
function f3(argsList) {

var localsList;
...

}

}

class Foo {
static staticsList;
method f1(argsList) {

var localsList;
...

}
method f2(argsList) {

var localsList;
...

}
function f3(argsList) {

var localsList;
...

}

}

class Bar {
static staticsList;
function f1(argsList){

...
}
method f2(argsList) {

var localsList;
...

}
}

class Bar {
static staticsList;
function f1(argsList){

...
}
method f2(argsList) {

var localsList;
...

}
}

Jack source code:

class Foo {
static int x1, x2, x3;
method int f1(int x) {

var int a, b;
...

}
method void f2(int x, int y) {

var int a, b, c;
...

}
function int f3(int u) {

var int x;
...

}

}

class Foo {
static int x1, x2, x3;
method int f1(int x) {

var int a, b;
...

}
method void f2(int x, int y) {

var int a, b, c;
...

}
function int f3(int u) {

var int x;
...

}

}

class Bar {
static int y1, y2;
function void f1(int u, int v) {

...
}
method void f2(int x) {

var int a1, a2;
...

}
}

class Bar {
static int y1, y2;
function void f1(int u, int v) {

...
}
method void f2(int x) {

var int a1, a2;
...

}
}

Jack source code (example):

Foo.vm
f1 f2 f3 f1 f2

Bar.vm
VM filesCompiler

Following compilation:

Hack machine language code

temp

static static

argument

local

this

that

constant

VM
translator

VM
translator

(one set
of virtual
segments
for each
instance
of a
running
function)

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 7

The challenge ahead

In order to enable such high-level code we have to know how to handle:

Arithmetic operations (previous lecture)

Boolean operations (previous lecture)

Program flow (this lecture, easy)

Subroutines (this lecture, medium/rare)

acabbx 2/)4(2 ⋅⋅−+−=

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

In the Jack/Hack platform: all these abstractions are delivered by the VM level.

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 8

Program flow

function mult 2
push constant 0
pop local 0
push argument 1
pop local 1

label loop
push local 1
push constant 0
eq
if-goto end
push local 0
push argument 0
add
pop local 0
push local 1
push constant 1
sub
pop local 1
goto loop

label end
push local 0
return

function mult 2
push constant 0
pop local 0
push argument 1
pop local 1

label loop
push local 1
push constant 0
eq
if-goto end
push local 0
push argument 0
add
pop local 0
push local 1
push constant 1
sub
pop local 1
goto loop

label end
push local 0
return

Example:

Implementation (by translation to assembly):

Simple. label declarations and goto
directives can be effected directly by
assembly commands.

label c

goto c

if-goto c
(pop the topmost element from the
stack. If it’s not zero, jump)

label c

goto c

if-goto c
(pop the topmost element from the
stack. If it’s not zero, jump)

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 9

Subroutines

Subroutines = a major programming artifact

The primitive (given) language can be extended at will by user-defined
commands (AKA subroutines / functions / methods ...)

The primitive commands and the user-defined commands have the same
look-and-feel

Perhaps the most important abstraction delivered by programming
languages. The challenge: to make the implementation of this
abstraction as transparent as possible:

“A well-deigned system consists of a collection of black box modules,
each executing its effect like magic”
(Steven Pinker, How The Mind Works)

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 10

Subroutines usage at the VM level (pseudo code)

Call-and-return convention
The caller pushes the arguments, calls the callee, then waits for it to return
Before the callee terminates (returns), it must push a return value
At the point of return, the callee’s resources are recycled, and the caller’s state
is re-instated
Caller’s net effect: the arguments were replaced by the return value
(just like with primitive operations)

Behind the scene
Recycling and re-instating subroutine resources and states is a major headache
The VM implementation should manage it “like magic”
The magic is stack-based, and is considered a great CS gem.

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 11

Subroutine commands

Implementation: Next few slides.

function g nVars

(Here starts a function called g, which has nVars local variables)

call g nArgs

(Invoke function g for its effect; nArgs arguments have been pushed
onto the stack)

Return

(Terminate execution and return control to the calling function)

function g nVars

(Here starts a function called g, which has nVars local variables)

call g nArgs

(Invoke function g for its effect; nArgs arguments have been pushed
onto the stack)

Return

(Terminate execution and return control to the calling function)

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 12

Aside: The VM emulator (Java-based, included in the course software suite)

Calling
hierarchy

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 13

The calling protocol

The caller’s view:

When I start executing, my argument segment has been initialized with
actual argument values passed by the caller

My local variables segment has been allocated and initialized to zero

The static segment that I see has been set to the static segment of the
VM file to which I belong, and the working stack that I see is empty

Before returning, I must push a value onto the stack.

When I start executing, my argument segment has been initialized with
actual argument values passed by the caller

My local variables segment has been allocated and initialized to zero

The static segment that I see has been set to the static segment of the
VM file to which I belong, and the working stack that I see is empty

Before returning, I must push a value onto the stack.

function g nVars
call g nArgs
return

function g nVars
call g nArgs
return

Before calling the function, I must push as many arguments as
necessary onto the stack

Next, I invoke the function using the call command

After the called function returns:

The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists) appears
at the top of the stack

All my memory segments (argument, local, static, …) are the same
as before the call.

Before calling the function, I must push as many arguments as
necessary onto the stack

Next, I invoke the function using the call command

After the called function returns:

The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists) appears
at the top of the stack

All my memory segments (argument, local, static, …) are the same
as before the call.

The callee’s view:

Blue = function
writer’s
responsibility

Black = black box
magic, supplied by
the VM
implementation.

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 14

VM implementation view of the calling protocol

When function f calls function g, I must:

Save the return address

Save the segment pointers of f

Allocate, and initialize to 0, as many local variables as needed by g

Set the local and argument segment pointers of g

Transfer control to g.

When g terminates and control should return to f, I must:

Clear the arguments and other junk from the stack

Restore the segments of f

Transfer control back to f
(jump to the saved return address).

function g nVars
call g nArgs
return

function g nVars
call g nArgs
return

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 15

The VM implementation housekeeping storage = the stack

argument n-1

ARG

saved state of the calling
function, used to return
to and restore the
segments of, the calling
function upon returning
from the current function

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

local variables of the
current function

arguments pushed for
the current function

Remember: at any typical
point of time, some
functions are waiting, and
only the current function
is running

Shaded areas:
irrelevant to the current
function

The current function sees
only the top of the stack
(AKA working stack)

The rest of the stack
holds the frozen states of
all the functions up the
calling hierarchy

Physical storage details
depend on the VM
implementation.

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 16

Example: a typical calling scenario
function fact(n) {
 vars result,j;
 result=1; j=1;
 while j<=n {
 result=mult(result,j);
 }
 return result;
}

function mult(x,y) {
 vars sum,j;
 sum=0; j=y;
 while j>0 {
 sum=sum+x;
 }
 return sum;
}

function p(...) {
...
 ... fact(4) ...
}

2

call fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 17

Behind the scene:

function p(...) {
...
 ... fact(4) ...
}

function fact(n) {
 vars result,j;
 result=1; j=1;
 while j<=n {
 result=mult(result,j);
 }
 return result;
}

function mult(x,y) {
 vars sum,j;
 sum=0; j=y;
 while j>0 {
 sum=sum+x;
 }
 return sum;
}

just before "call mult"

ARG argument 0 (fact)

return addr (p)

LCL (p)

ARG (p)

THIS (p)

working
stack (fact)

argument 0 (mult)

argument 1 (mult)

local 0 (fact)

local 1 (fact)

LCL

SP

THAT (p)

just after mult is entered

ARG

argument 0 (fact)

return addr (p)

LCL (p)

ARG (p)

THIS (p)

working
stack (fact)

argument 0 (mult)

argument 1 (mult)

local 0 (fact)

local 1 (fact)

LCL

SP

THAT (p)

return addr (fact)

LCL (fact)

ARG (fact)

THIS (fact)

local 0 (mult)

local 1 (mult)

THAT (fact)

just after mult returns

ARG argument 0 (fact)

return addr (p)

LCL (p)

ARG (p)

THIS (p)

working
stack (fact)

return value

local 0 (fact)

local 1 (fact)

LCL

SP

THAT (p)

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 18

Implementing the call f n command

argument n-1

ARG

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 19

Implementing the function f k command

argument n-1

ARG

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 20

Implementing the return command

argument n-1

ARG

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 21

One more detail: bootstrapping

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // the initialization function

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // the initialization function

A high-level jack program (AKA application) is a set of class files. By convention,
one class must be called Main, and this class must have at least one function called
main. The contract is such that when we tell the computer to execute the program,
the function Main.main starts running

Implementation:

After the program is compiled, each class file is translated into a .vm file

From the host platform’s standpoint, the operating system is also a set of .vm files
(AKA “libraries”) that co-exist alongside the user’s .vm files

One of the OS libraries is called Sys.vm, which includes a function called init.
This function starts with some OS initialization code (explained in Ch. 12), then it
does call f and enters an infinite loop; if the code originates from Jack, f is
Main.main

Thus, to bootstrap, the VM implementation has to effect (e.g. in assembly), the
following operations:

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 22

Extends the VM implementation proposed in the last lecture (Chapter 7)
The result: a big assembly program with lots of agreed-upon symbols:

VM implementation over the Hack platform

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 23

Proposed API

Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control slide 24

Perspective
Benefits of the VM approach

Code transportability: compiling for
different platforms require replacing only
the VM implementation

Language inter-operability: code of multiple
languages can be shared using the same VM

Common software libraries

Code mobility: Internet

Modularity:

Improvements in the VM
implementation are shared by all
compilers above it

Every new digital device with a VM
implementation gains immediate access
to an existing software base

New programming languages can be
implemented easily using simple
compilers

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . . written in
a high-level
language

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

TranslatorVM
emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some
language

. . .

Benefits of managed code:
Security
Array bounds, index checking,
…
Add-on code
Etc.

VM Cons
Performance.

