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Virtual Machine
Part II: Program Control
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The big picture
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Lecture plan

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands
pop segment i

push segment i

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands
pop segment i

push segment i

Program flow commands

label     (declaration)

goto      (label)

if-goto   (label)

Function calling commands

function  (declaration)

call      (a function)

return    (from a function)

Program flow commands

label     (declaration)

goto      (label)

if-goto   (label)

Function calling commands

function  (declaration)

call      (a function)

return    (from a function)

Previous
lecture

This
lecture

Goal: Specify and implement a VM model and language

Method: (a) specify the abstraction (model’s constructs and commands)
(b) propose how to implement it over the Hack platform.
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Program structure and translation path (on the Hack-Jack platform)

class Foo {
static staticsList;
method f1(argsList) {

var localsList;
...

}
method f2(argsList) {

var localsList;
...

}
function f3(argsList) {

var localsList;
...

}

}

class Foo {
static staticsList;
method f1(argsList) {

var localsList;
...

}
method f2(argsList) {

var localsList;
...

}
function f3(argsList) {

var localsList;
...

}

}

class Bar {
static staticsList;
function f1(argsList){

...
}
method f2(argsList) {

var localsList;
...

}
}

class Bar {
static staticsList;
function f1(argsList){

...
}
method f2(argsList) {

var localsList;
...

}
}

Jack source code:

class Foo {
static int x1, x2, x3;
method int f1(int x) {

var int a, b;
...

}
method void f2(int x, int y) {

var int a, b, c;
...

}
function int f3(int u) {

var int x;
...

}

}

class Foo {
static int x1, x2, x3;
method int f1(int x) {

var int a, b;
...

}
method void f2(int x, int y) {

var int a, b, c;
...

}
function int f3(int u) {

var int x;
...

}

}

class Bar {
static int y1, y2;
function void f1(int u, int v) {

...
}
method void f2(int x) {

var int a1, a2;
...

}
}

class Bar {
static int y1, y2;
function void f1(int u, int v) {

...
}
method void f2(int x) {

var int a1, a2;
...

}
}

Jack source code (example):

Foo.vm
f1 f2 f3 f1 f2

Bar.vm
VM filesCompiler

Following compilation:

Hack machine language code
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pointer
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that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer
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The challenge ahead

In order to enable such high-level code we have to know how to handle:

Arithmetic operations    (previous lecture)

Boolean operations         (previous lecture)

Program flow                  (this lecture, easy)

Subroutines                    (this lecture, medium/rare)

acabbx 2/)4( 2 ⋅⋅−+−=

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

In the Jack/Hack platform: all these abstractions are delivered by the VM level.



Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control  slide 8

Program flow

function mult 2  
push   constant 0
pop    local 0
push   argument 1
pop    local 1

label    loop
push   local 1
push   constant 0
eq
if-goto end
push   local 0
push   argument 0
add
pop    local 0
push   local 1
push   constant 1
sub
pop    local 1
goto   loop

label    end
push   local 0
return

function mult 2  
push   constant 0
pop    local 0
push   argument 1
pop    local 1

label    loop
push   local 1
push   constant 0
eq
if-goto end
push   local 0
push   argument 0
add
pop    local 0
push   local 1
push   constant 1
sub
pop    local 1
goto   loop

label    end
push   local 0
return

Example:

Implementation (by translation to assembly):

Simple. label declarations and goto 
directives can be effected directly by 
assembly commands.

label c

goto c

if-goto c
(pop the topmost element from the 
stack.  If it’s not zero, jump)

label c

goto c

if-goto c
(pop the topmost element from the 
stack.  If it’s not zero, jump)
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Subroutines

Subroutines = a major programming artifact

The primitive (given) language can be extended at will by user-defined 
commands ( AKA subroutines / functions / methods ...)

The primitive commands and the user-defined commands have the same 
look-and-feel

Perhaps the most important abstraction delivered by programming 
languages.  The challenge: to make the implementation of this 
abstraction as transparent as possible:

“A well-deigned system consists of a collection of black box modules,
each executing its effect like magic”
(Steven Pinker, How The Mind Works)

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b

if ~(a = 0)

x = (-b + sqrt(power(b,2) – 4 * a * c)) / (2 * a)

else

x = - c / b
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Subroutines usage at the VM level (pseudo code)

Call-and-return convention
The caller pushes the arguments, calls the callee, then waits for it to return
Before the callee terminates (returns), it must push a return value
At the point of return, the callee’s resources are recycled, and the caller’s state 
is re-instated
Caller’s net effect: the arguments were replaced by the return value
(just like with primitive operations)

Behind the scene
Recycling and re-instating subroutine resources and states is a major headache
The VM implementation should manage it “like magic”
The magic is stack-based, and is considered a great CS gem.
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Subroutine commands

Implementation: Next few slides. 

function g nVars

(Here starts a function called g, which has nVars local variables)

call g nArgs

(Invoke function g for its effect; nArgs arguments have been pushed 
onto the stack)

Return

(Terminate execution and return control to the calling function)

function g nVars

(Here starts a function called g, which has nVars local variables)

call g nArgs

(Invoke function g for its effect; nArgs arguments have been pushed 
onto the stack)

Return

(Terminate execution and return control to the calling function)
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Aside: The VM emulator (Java-based, included in the course software suite)

Calling 
hierarchy
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The calling protocol 

The caller’s view:

When I start executing, my argument segment has been initialized with 
actual argument values passed by the caller

My local variables segment has been allocated and initialized to zero

The static segment that I see has been set to the static segment of the 
VM file to which I belong, and the working stack that I see is empty

Before returning, I must push a value onto the stack.

When I start executing, my argument segment has been initialized with 
actual argument values passed by the caller

My local variables segment has been allocated and initialized to zero

The static segment that I see has been set to the static segment of the 
VM file to which I belong, and the working stack that I see is empty

Before returning, I must push a value onto the stack.

function g nVars
call g nArgs
return

function g nVars
call g nArgs
return

Before calling the function, I must push as many arguments as 
necessary onto the stack  

Next, I invoke the function using the call command

After the called function returns:

The arguments that I pushed before the call have disappeared 
from the stack, and a return value (that always exists) appears 
at the top of the stack  

All my memory segments (argument, local, static, …) are the same 
as before the call.

Before calling the function, I must push as many arguments as 
necessary onto the stack  

Next, I invoke the function using the call command

After the called function returns:

The arguments that I pushed before the call have disappeared 
from the stack, and a return value (that always exists) appears 
at the top of the stack  

All my memory segments (argument, local, static, …) are the same 
as before the call.

The callee’s view:

Blue = function 
writer’s  
responsibility

Black = black box 
magic, supplied by 
the VM 
implementation.
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VM implementation view of the calling protocol

When function f calls function g, I must:

Save the return address

Save the segment pointers of f

Allocate, and initialize to 0, as many local variables as needed by g

Set the local and argument segment pointers of g

Transfer control to g.

When g  terminates and control should return to f, I must:

Clear the arguments and other junk from the stack

Restore the segments of f

Transfer control back to f
(jump to the saved return address).

function g nVars
call g nArgs
return

function g nVars
call g nArgs
return



Elements of Computing Systems, Nisan & Schocken, MIT Press, 2005, www.idc.ac.il/tecs , Chapter 8: VM II: Program Control  slide 15

The VM implementation housekeeping storage = the stack

argument n-1

ARG

saved state of the calling
function, used to return
to and restore the
segments of, the calling
function upon returning
from the current function

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

local variables of the
current function

arguments pushed  for
the current function

Remember: at any typical 
point of time, some 
functions are waiting, and 
only the current function 
is running

Shaded areas: 
irrelevant to the current 
function

The current function sees 
only the top of the stack 
(AKA working stack)

The rest of the stack 
holds the frozen states of 
all the functions up the 
calling hierarchy

Physical storage details 
depend on the VM 
implementation.
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Example: a typical calling scenario
function fact(n) {
    vars result,j;
    result=1; j=1;
    while j<=n {
      result=mult(result,j);
    }
     return result;
}

function mult(x,y) {
    vars sum,j;
    sum=0; j=y;
    while j>0 {
      sum=sum+x;
    }
    return sum;
}

function p(...) {
...
   ... fact(4) ...
}

2

call fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return
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Behind the scene:

function p(...) {
...
   ... fact(4) ...
}

function fact(n) {
    vars result,j;
    result=1; j=1;
    while j<=n {
      result=mult(result,j);
    }
     return result;
}

function mult(x,y) {
    vars sum,j;
    sum=0; j=y;
    while j>0 {
      sum=sum+x;
    }
    return sum;
}

just before  "call mult"

ARG argument 0    (fact)

return addr        (p)

LCL                   (p)

ARG                  (p)

THIS                  (p)

working
stack              (fact)

argument 0    (mult)

argument 1    (mult)

local 0            (fact)

local 1            (fact)

LCL

SP

THAT                 (p)

just after mult is entered

ARG

argument 0   (fact)

return addr       (p)

LCL                  (p)

ARG                 (p)

THIS                  (p)

working
stack            (fact)

argument 0  (mult)

argument 1  (mult)

local 0          (fact)

local 1          (fact)

LCL

SP

THAT                 (p)

return addr   (fact)

LCL              (fact)

ARG            (fact)

THIS            (fact)

local 0          (mult)

local 1          (mult)

THAT           (fact)

just after mult returns

ARG argument 0    (fact)

return addr       (p)

LCL                   (p)

ARG                  (p)

THIS                   (p)

working
stack             (fact)

return value

local 0           (fact)

local 1           (fact)

LCL

SP

THAT                  (p)
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Implementing the call f n command

argument n-1

ARG

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT
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Implementing the function f k command

argument n-1

ARG

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT
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Implementing the return command

argument n-1

ARG

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT
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One more detail: bootstrapping

SP = 256         // initialize the stack pointer to 0x0100

call Sys.init   // the initialization function

SP = 256         // initialize the stack pointer to 0x0100

call Sys.init   // the initialization function

A high-level jack program (AKA application) is a set of class files.  By convention, 
one class must be called Main, and this class must have at least one function called 
main. The contract is such that when we tell the computer to execute the program, 
the function Main.main starts running

Implementation:

After the program is compiled, each class file is translated into a .vm file

From the host platform’s standpoint, the operating system is also a set of .vm files 
(AKA “libraries”) that co-exist alongside the user’s .vm files 

One of the OS libraries is called Sys.vm, which includes a function called init.
This function starts with some OS initialization code (explained in Ch. 12), then it 
does call f and enters an infinite loop; if the code originates from Jack, f is 
Main.main

Thus, to bootstrap, the VM implementation has to effect (e.g. in assembly), the 
following operations: 
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Extends the VM implementation proposed in the last lecture (Chapter 7)
The result: a big assembly program with lots of agreed-upon symbols:

VM implementation over the Hack platform
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Proposed API
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Perspective
Benefits of the VM approach

Code transportability: compiling for 
different platforms require replacing only 
the VM implementation

Language inter-operability: code of multiple 
languages can be shared using the same VM

Common software libraries

Code mobility: Internet

Modularity:

Improvements in the VM 
implementation are shared by all 
compilers above it

Every new digital device with a VM 
implementation gains immediate access 
to an existing software base

New programming languages can be 
implemented easily using simple 
compilers

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . . written in
a high-level
language

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

TranslatorVM
emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some
language

. . .

Benefits of managed code:
Security
Array bounds, index checking, 
…
Add-on code
Etc.

VM Cons
Performance.


