
Chapter 13: Postcript 229

13. Postscript: More Fun to Go1

We shall not cease from exploration,

 and at the end we will arrive where we started,
and know the place for the first time.

T.S. Eliot, American poet, 1888-1965

Congratulations! You have finished the construction of a complete computing system. We hope
that you enjoyed this journey. Let us, the authors of this book, share a secret with you: we suspect
that we enjoyed writing the book even more. After all, we got to design this computing system,
and design is often the “fun-nest” part of every project. We are sure that some of you,
adventurous readers, would like to get in on some of that design action. Maybe you would like to
improve the architecture; maybe you have ideas for adding new features here and there, maybe
you envision a wider system. And then, maybe, you just want to be in the navigator’s seat and
decide where to go, not only how to get there.

Many alternative design elements can be implemented by modifying and extending the software
that you have written in the various projects. For example, the assembly language, the Jack
language, and the operating system can be modified and extended at will, by rewriting portions of
your respective assembler, compiler, and OS implementations. Other changes would likely
require modification of the software supplied by us. For example, if you change the VM
specification or the hardware specification, then you would probably want to change the
respective emulators as well. Or if you want to add a new input or output device to the Hack
computer, you would probably need to model them as built-in chips in the hardware simulator.

In order to allow complete flexibility of modifications and extensions, we are making all the
source code of the software associated with the book publicly available. All our code is 100%
Java, expect for the batch files used for starting the software on the Windows and Linux
platforms. The software and its documentations are available from the book’s web site at
http://www.idc.ac.il/tecs. You are welcome to modify and extend all our tools as you deem
desirable for your latest idea – and then share them with others, if you want. We hope that our
code is written and documented well enough as to make modifications a satisfying experience. In
particular, we wish to mention that the supplied hardware simulator has a simple and well-
documented interface for adding new “built-in” chips. This interface can be used for extending
the simulated hardware platform with, say, disk storage or communications devices.

While we cannot even start to imagine what your design improvements may be, we can briefly
sketch some of the ones we were thinking of.

Hardware Realizations

Every hardware module presented in the book was software-based and HDL-simulated. This, in
fact, is how hardware is actually designed. However, at some point, the HDL designs are
typically committed to silicon, becoming “real computers”. Wouldn’t it be nice to make Hack or

1 From The Elements of Computing Systems by Nisan & Schocken (draft ed.), MIT Press, 2005, www.idc.ac.il/tecs

http://www.idc.ac.il/tecs

Chapter 13: Postcript 230

Jack also run on some “real platform,” made from some “real stuff”? Several different
approaches may be taken towards this goal. On one extreme, you can attempt to nearly directly
fabricate a real chip using the existing HDL design of Hack, and then deal with implementation
issues related to the RAM, ROM, and I/O devices. Another extreme approach may be to attempt
emulation (of either Hack, the VM, or even the Jack platform) on some existing hardware device
like a cell-phone or a PDA. It seems that any such project would want to reduce the size of the
Hack screen as to keep the cost of the hardware resources reasonable.

Hardware Improvements

Although Hack is a stored program computer, the program that it runs must be pre-stored in its
ROM device. In the present Hack architecture, there is no way of loading another program into
the computer under user control, except for simulating the replacement of the entire physical
ROM chip. Adding a “load program” capability in a balanced way would likely involve changes
at several levels of the hierarchy. The Hack hardware should be modified to allow loaded
programs to reside in a writeable RAM rather than in the existing ROM. Some type of permanent
storage (e.g. a disk-on-chip) should probably be added to the hardware, to allow storage of
programs. The operating system should be extended to handle this permanent storage device, as
well as new logic for loading and running programs. At this point some kind of an OS user
interface (“shell” or “DOS window”) would come in handy.

High-level Languages

Like all professionals, programmers have strong feelings about their tools – the programming
languages they use – and like to personalize them. And indeed, the Jack language, which leaves
much to be desired, can be significantly improved or completely replaced (e.g., how about
Scheme?). Some changes are simple, some are more involved, and some would likely require
modifying the VM specification (e.g. adding real inheritance).

Optimizations

The book has almost completely sidestepped optimization issues (except for Chapter 12, which
introduced some efficiency measures). Optimization is a great playfield for every hacker. You
can start with local optimizations in the existing compiler or hardware (or, in our platform, the
best bang for the buck will probably come from optimizing the VM translator). Ambitious
optimizations on a more global scale will involve changing specifications of interfaces such as
the machine language or the VM language.

Communications

Wouldn’t it be nice to connect the Hack computer to the Internet? This could probably be done
by adding a built-in communication chip to the hardware and writing some OS code to deal with
it and to handle higher-level communication protocols. Some other programs would need to
“talk” with the simulated communication chip, providing an interface to the Internet. For
example, an HTTP-speaking web-browser in Jack seems like a feasible and worthy project.

These are some of our design itches – what are yours?

