
Chapter 12: Operating System 203

12. Operating System1

Civilization progresses by extending the number of operations

that we can perform without thinking about them.

(Alfred North Whitehead, Introduction to Mathematics, 1911)

In previous chapters of this book we described and built the hardware architecture of a computer
platform, called Hack, and the software hierarchy that makes it usable. In particular, we
introduced an object-based language, called Jack, and described how to write a compiler for it.
Other high-level programming languages can be specified on top of the Hack platform, each
requiring its own compiler.

The last major interface missing in this puzzle is an operating system. The OS is designed to
close gaps between the computer's hardware and software systems, and to make the overall
computer more accessible to programmers and users. For example, in order to render the text
“Hello World” on our computer’s screen, several hundred pixels must be drawn at specific
screen locations. This can be done by consulting the hardware specification and writing code that
puts the necessary bits in the RAM-resident screen memory map. Needless to say, high-level
programmers will expect something better than that. They will want to use a command like
printString(“Hello World”), and let someone else worry about the details. And that’s where
the operating system enters the picture.

Throughout this chapter, the term “operating system” is used rather loosely. In fact, the OS
services that we describe comprise an operating system in a very minimal fashion, aiming at (i)
encapsulating various hardware-specific services in a software-friendly way, and (ii) extending
high-level languages with various functions and abstract data types. The dividing line between an
operating system in this sense and a standard language library is not very clear. Indeed, some
modern languages, most notably Java, tend to pack many classic operating system services like
GUI management, memory management and multi-tasking in its standard software library, along
with many language extensions.

Following this pattern, the collection of services that we specify and build in this chapter can be
viewed as a combination of a simple operating system and a standard library for the Jack
language. This OS is packaged as a collection of Jack classes, each providing a set of related
services via Jack subroutine calls. The resulting OS has many features resembling those of
industrial strength operating systems, but it still lacks numerous OS features such as process
handling, disk management, communications, and more.

Operating systems are usually written in a high level language and compiled into binary form,
just like any other program. Our OS is no exception -- it can be written completely in Jack. Yet
unlike other programs written in high-level languages, the operating system code must be aware
of the hardware platform on which it runs. In other words, in order to hide the gory hardware
details from the application programmer, the OS programmer must write code that manipulates
these details directly (a task that requires access to the hardware documentation). Conveniently,

1 From The Elements of Computing Systems by Nisan & Schocken (draft ed.), MIT Press, 2005, www.idc.ac.il/tecs

http://www.idc.ac.il/tecs

Chapter 12: Operating System 204

this can be done using the Jack language. As we will see below, Jack was defined with sufficient
“lowness” in it, permitting an intimate closeness to the hardware when needed.

The chapter starts with a relatively long Background section, describing key algorithms normally
used to implement basic operating system services. These include mathematical functions, string
operations, memory management, handling text and graphics output to the screen, and handling
inputs from the keyboard. This algorithmic introduction is followed by a Specification section,
providing the complete API of the Jack OS, and an Implementation section, describing how to
build the OS using the classic algorithms presented earlier. As usual, the final Project section
provides all the necessary project materials for gradual construction and unit-testing the entire OS
presented in the chapter.

The chapter embeds two key lessons, one in software engineering and one in computer science.
First, we complete the construction of the high-level language, compiler, and operating system
trio. Second, since operating system services must execute efficiently, we pay attention to
running time considerations. The result is an elegant series of algorithms, each being a computer
science gem.

12.1 Background

12.1.1 Mathematical Operations

Computer systems must support mathematical operations like addition, multiplication, and
division. Normally, addition is implemented in hardware, at the ALU level, as we have done in
Chapter 3. Other operations like multiplication and division can be handled by either hardware or
software, depending on the computer's cost/performance requirements. This section shows how
multiplication, division, and square root operations can be implemented efficiently in software, at
the operating system level. It should be noted that hardware implementations of these
mathematical operations are based on the same algorithms presented below.

Efficiency First

Mathematical algorithms operate on n-bit binary numbers, with typical computer architectures
having n=16, 32 or 64. As a rule, we seek algorithms whose running time is proportional (or at
least polynomial) in this parameter n. Algorithms whose running time is proportional to the value
of n-bit numbers are unacceptable, since these values are exponential in n. For example, suppose
we implement the multiplication operation yx ⋅ using the repeated addition algorithm
for i = 1 ... y {result = result + x}. Well, the problem is that in a 64-bit computer, y can be greater
than 18,000,000,000,000,000,000, implying that this naïve algorithm may run for years even on
the fastest computers. In sharp contrast, the running time of the multiplication algorithm that we
present below is proportional not to the multiplicands’ value, which may be as large as , but
rather to n. Therefore, it will require only

n2
nc ⋅ elementary operations for any pair of

multiplicands, where c is a small constant representing the number of elementary operations
performed in each loop iteration.

Chapter 12: Operating System 205

We will use the standard “Big-Oh” notation, O(n), to describe the running time of algorithms.
Readers who are not familiar with this notation can simply read O(n) as “in the order of
magnitude of n”. With that in mind, we now turn to present an efficient multiplication yx ⋅
algorithm for n-bit numbers whose running time is O(n) rather than O(x) or O(y), which are
exponentially larger.

Multiplication

Consider the standard multiplication method taught in elementary school. To compute 356 times
27, we line up the two numbers one on top of the other. Next, we multiply each digit of 356 by 7.
Next, we "shift to the left" one position, and multiply each digit of 356 by 2. Finally, we sum up
the columns and obtain the result. The binary version of this technique -- Algorithm 12.1 --
follows exactly the same logic.

Long multiplication

 x 1 0 1 1 = 1 1
 y * 1 0 1 = 5 j-th bit of y

 1 0 1 1 1
 0 0 0 0 0
 1 0 1 1 1

yx ⋅ 1 1 0 1 1 1 = 5 5

multiply(x, y):
 // Where x, y ≥ 0
 sum = 0
 shiftedX = x
 for j)1(0 −= nK do
 if (j-th bit of y) = 1 then
 sum = sum + shiftedX
 shiftedX = shiftedX * 2

ALGORITHM 12.1: Multiplication of two n-bit numbers.

Algorithm 12.1 performs O(n) addition operations on n-bit numbers, where n is the number of
bits in x and y. Note that shiftedX * 2 can be efficiently obtained by either left-shifting its bit
representation or by adding shiftedX to itself. Both operations can be easily performed using
primitive ALU operations. Thus Algorithm 12.1 lends itself naturally to both software and
hardware implementations.

A comment about notation: The algorithms in this chapter are written using a self-explanatory
pseudo-code syntax. The only non-obvious convention is that we use indentation to represent
blocks of code (avoiding curly brackets or begin/end keywords). For example, in Algorithm 12.1,

Chapter 12: Operating System 206

sum=sum+shiftedX belongs to the single-statement body of the if statement whereas
shiftedX=shiftedX*2 ends the two-statement body of the for statement.

Division

The naïve way to compute the division of two n-bit numbers x / y is to repeatedly subtract y from
x until it is impossible to continue (i.e. until x<y). The running time of this algorithm is clearly
proportional to the quotient, and may be as large as O(x), i.e. exponential in the number of bits n.
To speed up this algorithm, we can try to subtract large chunks of y's from x in each iteration. For
example, if x=891 and y=5, we can tell right away that we can deduct a hundred 5's from x and
the remainder will still be greater than 5, thus shaving 100 iterations from the naïve approach.
Indeed, this is the rationale behind the school method for long division x / y. Formally, in each
iteration we try to subtract from x the largest possible shift of y, i.e. Ty ⋅ where T is the largest
power of 10 such that xTy ≤⋅ . The binary version of this opportunistic algorithm is identical,
except that T is a power of 2 instead of 10.

Writing down this long division algorithm as we have done for multiplication is an easy exercise.
We find it more illuminating to formulate the same logic as a recursive program that is probably
easier to implement.

divide (x, y):
 // Integer part of x / y, where x ≥ 0 and y > 0
 if y > x return 0
 q = divide(x, 2 * y)
 if (x – 2 * q * y) < y
 return 2 * q
 else
 return 2 * q + 1

ALGORITHM 12.2: Division.

The running time of this algorithm is determined by the depth of the recursion. Since in each
level of recursion the value of y is multiplied by 2, and since we terminate once y>x, it follows
that the recursion depth is bounded by n, the number of bits in x. Each recursion level involves a
constant number of addition, subtraction, and multiplication operations, implying a total running
time of O(n) such operations.

Algorithm 12.2 may be considered sub-optimal since each multiplication operation also requires
O(n) addition and subtraction operations. However, careful inspection reveals that the product
2*q*y can be computed without any multiplication. Instead, we can rely on the value of this
product in the previous recursion level, and use addition to establish its current value.

Chapter 12: Operating System 207

Square Root

Square roots can be computed efficiently in a number of different ways, e.g. using the Newton-
Raphson method or a Taylor series expansion. For our purpose though, a simpler algorithm will
suffice. The square root function xy = has two convenient properties. First, it is
monotonically increasing. Second, its inverse function, , is something that we already
know how to compute (multiplication). Taken together, these properties imply that we have all
we need to compute square roots using binary search. Algorithm 12.3 gives the details.

2yx =

sqrt(x):

 // Compute the integer part of xy = . Strategy:
 // Find an integer y such that 22)1(+<≤ yxy (for nx 20 <≤)
 // By performing a binary search in the range 120 2/ −nK .
 0=y
 for 012/ K−= nj do
 if xy j ≤+ 2)2(then jyy 2+=
 return y

ALGORITHM 12.3: Square root computation using binary search.

Note that each loop iteration takes a constant number of arithmetic operations. Since the number
of iterations is bound by n/2, the algorithm’s running time is O(n) arithmetic operations.

12.1.2 String representation of numbers

Computers represent numbers internally using binary codes. Yet humans are used to dealing with
numbers in a decimal notation. Thus, when humans have to read or input numbers, and only then,
a conversion to or from decimal notation must be performed. Typically, this service is implicit in
the character handling routines supplied by the operating system. We now turn to describe how
these OS services are actually implemented.

Of course the only subset of characters which is of interest here are the ten digit symbols that
represent actual numbers. The ASCII codes of these characters are as follows:

Character: ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

ASCII code: 48 49 50 51 52 53 54 55 56 57

As gleaned from the ASCII code, single digit characters can be easily converted into their
numeric representation, and vice versa, as follows. To compute the ASCII code of a given digit

90 ≤≤ x , we can simply add x to 48 – the code of ‘0’. Conversely, the numeric value represented
by an ASCII code 5748 ≤≤ c is obtained by c-48. And once we know how to convert single

Chapter 12: Operating System 208

digits, we can proceed to convert any given integer. These conversion algorithms can be based on
either iterative or recursive logic, so we present one of each.

// Convert a non-negative number to a string
int2String(n):
 lastDigit = n % 10
 c = character representing lastDigit
 if n < 10
 return c (as a string)
 else
 return int2String(n / 10).append(c)

 // Convert a string to a non-negative number
string2Int(s):

v = 0
for i = K1 length of s do
 d = integer value of the digit s[i]
 v = v * 10 + d
return v
// (Assuming that s[1] is the most
// significant digit character of s.)

ALGORITHMS 12.4 and 12.5: String-numeric conversions

12.1.3 Memory Management

Dynamic Memory Allocation: Computer programs declare and use all sorts of variables,
including simple data items like integers and booleans and complex ones like arrays and objects.
One of the greatest virtues of high-level languages is that programmers don’t have to worry about
allocating RAM space to these variables and recycling the space when it is no longer needed.
Instead, all these memory management chores are done behind the scene by the compiler, the
operating system and the virtual machine implementation. This section describes the role of the
operating system in this joint effort.

Different variables are allocated memory at different points of time during the program’s life
cycle. For example, static variables may be allocated by the compiler at compile time, while
local variables are allocated on the stack by the VM implementation each time a subroutine starts
running. Other memory is dynamically allocated during the program’s execution, and that’s
where the OS enters the picture. For example, each time a Java program creates a new array or a
new object, a memory block whose size can be determined only during run-time should be
allocated. And when the array or the object is no longer needed, its RAM space may be recycled.
In some languages like C++ and Jack, de-allocation of un-needed space is the responsibility of
the programmer, while in others, like Java, “garbage collection” occurs automatically. The RAM
segment from which memory is dynamically allocated is called heap, and the agent responsible
for managing this resource is the operating system.

Operating systems use various techniques for handling dynamic memory allocation and de-
allocation. These techniques are implemented in two functions traditionally called alloc() and
deAlloc(). We present two memory allocation algorithms: a basic one and an improved one.

Chapter 12: Operating System 209

Basic memory allocation algorithm: The data structure that this algorithm manages is a single
pointer, called free, which points to the beginning of the heap segment that was not yet allocated.
Algorithm 12.6a gives the details.

Initialization: free = heapBase

// Allocate a memory block of size words.
alloc(size):
 pointer = free
 free = free + size
 return pointer

// De-allocate the memory space of a given object.
deAlloc(object):

 do nothing

ALGORITHM 12.6a: Basic memory allocation scheme (wasteful)

Algorithm 12.6a is clearly wasteful, as it does not reclaim the space of decommissioned objects.

Improved memory allocation algorithm: This algorithm is also able to reclaim de-allocated
memory. It manages a linked list of available memory segments, called freeList. Each segment
contains two housekeeping fields: the segment’s length, and a pointer to the next segment in the
list. These fields can be physically kept in the segment’s first two memory locations. For
example, the implementation can use the convention segment.length==segment[0] and
segment.next==segment[1]. The top left of Algorithm 12.6b illustrates a typical freeList state.

When asked to allocate a memory block of some given size, the algorithm has to search the
freeList for a suitable segment. There are two well-known heuristics for doing this search. Best-fit
finds the segment whose length is the closest (from above) to the required size, while first-fit
finds the first segment that is long enough. Once a suitable segment has been found, the required
memory block is taken from it (the location just before the beginning of the returned block,
block[-1], is reserved to hold its length, to be used during de-allocation). Next, this segment is
updated in the freeList, becoming the part that remained after the allocation. If no memory was
left in the block, or if the remaining part is practically too small, the entire segment is eliminated
from the freeList.

When asked to reclaim the memory block of an unused object, the algorithm appends the de-
allocated block to the freeList. The details are given in Algorithm 12.6b.

Chapter 12: Operating System 210

freeList

Data structure

4 9 5 freeList 4 3 5

6
returned block

After alloc(5)

Initialization:
freeList = heapBase
freeList.length = heapLength
freeList.next = null

// Allocate a memory space of size words.
alloc(size):

Search freeList using best-fit or first-fit heuristics
 to obtain a segment with segment.length > size
If no such segment is found, return failure
 (or attempt defragmentation)
block = needed part of the found segment
 (or all of it, if the segment remainder is too small)
Update freeList to reflect the allocation
block[-1] = size + 1 // Remember block size, for de-allocation
Return block

// Deallocate a decommissioned object.
deAlloc(object):

segment = object - 1
segment.length = object[-1]
Insert segment into the freeList

ALGORITHM 12.6b: Improved Memory Allocation Scheme (with recycling)

After a while, dynamic memory allocation schemes like Algorithm 12.6b may create a block
fragmentation problem. Hence, some kind of “defrag” operation should be considered, i.e.

Chapter 12: Operating System 211

merging memory areas that are physically consecutive in memory but logically split into different
segments in the freeList. The de-fragmentation operation can be done each time an object is de-
allocated, or when alloc() fails to find an appropriate block, or according to some other
intermediate or ad-hoc condition.

12.1.4 Variable-length arrays and Strings

Suppose we want to use high-level operations like s1=”New York” or s2=readLine(”enter a
city”). How can we implement these variable-length abstractions? The common approach in
modern languages is to use a String class that supplies services for creating and manipulating
string objects. The string object can be physically realized using an array. Normally, when the
string is created, this array is allocated to hold some maximum possible length. The actual length
of the string at each point of time may be shorter than this maximum, and must be maintained
throughout the string object’s life cycle. For example, if we issue a command like
s1.eraseLastChar(), the actual length of s1 should decrease from 8 to 7 (although the length of
the initially created array does not change). In general then, array locations beyond the current
length are not considered part of the string contents.

Most programming languages feature string types, as well as other data types of variable lengths.
The string objects are usually provided by the language’s standard library, e.g. the String and
StringBuffer classes in Java or the strXXX functions in C.

12.1.5 Input/Output Management

Computers are typically connected to a variety of input-output devices such as keyboard, screen,
mouse, disk, network card, etc. Each of these I/O devices has its own electro-mechanical and
physical idiosyncrasies, and thus reading and writing data on them involves many technical
details. High-level languages abstract these details away from the programmer using high-level
operations like “c=readChar()” and “printChar(c)”. These operations are implemented by OS
routines that carry out the actual I/O.

Hence, an important function of the operating system is handling the various I/O devices
connected to the computer. This is done by encapsulating the details of interfacing the device and
by providing convenient access to its basic functionality, using a set of O/S routines collectively
known as the device driver. In this book we describe the basic elements of handling the two most
prevalent I/O devices: a screen and a keyboard. We divide the handling of the screen into two
logically separate modules: handling graphics output and handling character output.

12.1.5.1 Graphics output

Pixel drawing: Most computers today use raster, also called bitmap, display technologies. The
only primitive operation that can be physically performed in a bitmap screen is drawing an
individual pixel -- a single “dot” on the screen specified by (column, row) coordinates. The usual
convention is that columns are numbered from left to right (like the conventional x-axis) while
rows are numbered from the top down (opposite of the conventional y-axis). Thus the screen
coordinates of the top left pixel are (0,0).

Chapter 12: Operating System 212

The low level drawing of a single pixel is a hardware-specific operation that depends on the
particular interface of the screen and the underlying graphics card. If the screen interface is based
on a RAM-resident memory map, as in Hack, then drawing a pixel is achieved by writing the
proper binary value into the RAM location that represents the required pixel in memory.

drawPixel (x, y):
 // Hardware-specific.
 // Assuming a memory mapped screen:
 Write a predetermined value in the RAM
 location corresponding to screen location (x, y).

ALGORITHM 12.7: Drawing a pixel.

The memory map interface of the Hack screen was described in Section 2.4 of Chapter 5.
Formulating a drawPixel algorithm that follows this contract is a simple task left to the reader as
an exercise. So, now that we know how to draw a single pixel, let us turn to describe how to draw
lines and circles.

Line drawing: When asked to draw a line between two locations on a bitmap screen, the best
that we can possibly do is approximate the line by drawing a series of pixels along the imaginary
line connecting the two points. Note that the “pen” that we use can move in four directions only:
up, down, left, and right. Thus the drawn line is bound to be jagged, and the only way to make it
look good is to use a high-resolution screen. Since the receptor cells in the human eye’s retina
also form a grid of “input pixels,” there is a limit to the image granularity that the human eye can
resolve anyway. Thus, high-resolution screens and printers can fool the human eye to believe that
the lines drawn by pixels or printed dots are visibly smooth. In fact they are always jagged.

The procedure for drawing a line from location to location starts by drawing the

 pixel and then zigzagging in the direction of , until this pixel is reached. See
figure 12.8a for the details.

)1,1(yx)2,2(yx
)1,1(yx)2,2(yx

Chapter 12: Operating System 213

b
a

b
adx

dy

dx
dy

),(yx

),(dyydxx ++

),(yx

),(dyydxx ++

overshooting undershooting

),(byax ++

),(byax ++

++b
++a

drawLine(x, y, x+dx, y+dy):
 // Assuming 0, >dydx
 initialize)0,0(),(=ba
 while dxa ≤ and dyb ≤ do
 drawPixel),(byax ++
 if dybdxa // < then a++ else b++

ALGORITHM 12.8a: Line Drawing

To extend Algorithm 12.8a into a general-purpose line drawing routine, one also has to take care
of the possibilities , 0, <dydx 0,0 <> dydx , and 0,0 >< dydx . To complete the picture, note
that the special cases or , required for drawing vertical and horizontal lines, are not
handled by the algorithm. These widely used cases should probably benefit from a separate and
optimized treatment anyway.

0=dx 0=dy

An annoying feature of Algorithm 12.8a is the use of division operations in each loop iteration.
These division operations are not only time-consuming -- they also require floating point
operations rather than simple integer arithmetic. The first obvious solution is to replace the

 condition with the equivalent dybdxa // < dxbdya ⋅<⋅ , which requires only integer
multiplication. Further, careful inspection of the algebraic structure of the latter condition reveals
that it may be checked without using any multiplication at all. As shown in Algorithm 12.8b, this
may be done efficiently by maintaining a variable that updates the value of dxbdya ⋅−⋅ each
time either a or b are modified.

Chapter 12: Operating System 214

 // To test whether dybdxa // < , maintain a variable adyMinusbdx,
 // and test if it becomes negative.
 Initialization: set adyMinusbdx = 0
 When a++ is performed: set adyMinusbdx = adyMinusbdx + dy

 When b++ is performed: set adyMinusbdx = adyMinusbdx - dx

ALGORITHM 12.8b: Testing whether dybdxa // <
using addition operations only.

Circle drawing: There are several ways to draw a circle on a bitmap screen. We present an
algorithm that uses three routines already implemented in this chapter: multiplication, square root
computation, and line drawing.

point

r dy
22 dyr −

),(yx

rdy =

2=dy

1=dy

0=dy

1−=dy

2−=dy

rdy −=

),(22 dyydyrxa +−−= point),(22 dyydyrxb +−+=

a b

...

...

drawCircle(x, y, r):

 for each rrdy K−∈ do

 drawLine from),(22 dyydyrx +−− to),(22 dyydyrx +−+

ALGORITHM 12.9: Circle Drawing

The algorithm is based on drawing a series of horizontal lines (like the typical line ab in the
figure), one for each row in the range ry − to ry + . Since r is specified in pixels, the algorithm

Chapter 12: Operating System 215

ends up drawing a line in every screen row along the circle’s north-south diameter, resulting in a
completely filled circle. A trivial tweaking of this algorithm can yield an empty circle as well.

Note that Algorithm 12.9 is somewhat inefficient, since the square root computation in each
iteration is an expensive operation. There exist many other circle drawing algorithms, including
ones that involve addition operations only, in the same spirit of our line-drawing algorithm.

12.1.5.2 Character Output

All the output that we described so far was graphical: pixels, lines, and circles. We now turn to
describe how characters are printed on the screen. Well, pixel by pixel, using the good services
of the operating system. Here are the details.

To develop a capability to write text on a bitmap screen, we first have to divide the physical
pixel-oriented screen into a logical, character-oriented screen suitable for writing complete
characters. For example, consider a 256 rows by 512 columns screen. If we allocate a grid of
11*8 pixels for drawing a single character (11 rows, 8 columns), then our screen can show 23
lines of 64 characters each (with 3 extra rows of pixels left unused).

Next, for each character that we want to display on the screen, we can design a good-looking font,
and then implement the font using a series of character bitmaps. For example, figure 12.10 gives
a possible bitmap for the letter “A”.

FIGURE 12.10: Character bitmap of the letter “A”.

Note that in order for our display scheme to account for the requisite inter-character spacing, we
must make sure that the 11*8 bitmap of each character includes at least a 1-pixel space before the
next characters and at least a 1 pixel space between adjacent lines (the exact spacing may vary
with the size of the individual characters).

Characters are usually drawn on the screen one after the other, from left to right. For example, the
two commands print(”a”) and print(”b”) probably mean that the programmer wants to see
the image ”ab” drawn on the screen. Thus the character-writing package must maintain a
“cursor” object that keeps track of the screen location where the next character should be drawn.
The cursor information consists of line and column counts. For example, the character screen

Chapter 12: Operating System 216

described at the section’s beginning is characterized (excuse the pun) by 220 ≤≤ line and

. Drawing a single character at location (line, column) is achieved by writing the
character’s bitmap onto the box of pixels at rows

630 ≤≤ column
101111 +⋅⋅ lineline K and

. After the character has been drawn, the cursor should be moved one
step to the right (i.e.

788 +⋅⋅ columncolumn K

1+= columncolumn), and, when a new line is requested, row should be
increased by 1 and column reset to 0. When the bottom of the screen is reached, there is a
question of what to do next, the common solution being to effect a “scrolling” operation. Another
possibility is starting over at the top left corner, namely setting the cursor to (0,0).

To conclude, we know how to write characters on the screen. Writing other types of data follows
naturally from this basic capability: strings are written character by character; numbers are first
converted to strings and then written as strings, and so on.

12.1.5.3 Keyboard Handling

Handling user-supplied text input is more involved than meets the eye. For example, consider the
command name=readLine(”enter your name:”). The low-level implementation of this
command is not trivial, since it involves an unpredictable event: a human user is supposed to
press some keys on the keyboard before this code can terminate properly. And the problem, of
course, is that human users press keyboard keys for variable durations of time. Hence, the trick is
to encapsulate the handling of all these messy low-level details in OS routines like readLine,
freeing high-level programs from this tedium.

This section describes how the operating system manages text-oriented input in three increasing
levels of abstraction: (i) detecting which key is currently pressed on the keyboard, (ii) capturing
single-character inputs, and (iii) capturing multi-character inputs, i.e. strings.

Detecting keyboard input: In the lowest-level form of capturing keyboard input, the program
gets data directly from the hardware, indicating which key is currently pressed by the user. The
access to this raw data depends on the specifics of the keyboard interface. For example, if the
interface is a memory map which is continuously refreshed from the keyboard, as in Hack, we can
simply inspect the contents of the relevant RAM area to determine which key is presently
pressed. The details of this inspection can then be incorporated into the implementation of
Algorithm 12.11.

keyPressed():
 // Depends on the specifics of the keyboard interface
 if a key is presently pressed on the keyboard
 return the ASCII value of the key
 else
 return 0

ALGORITHM 12.11: Capturing “raw” keyboard input.

For example, if you know the RAM address of the keyboard memory map in the host computer,
the implementation of this algorithm entails nothing more than a memory lookup.

Chapter 12: Operating System 217

Reading a single character: The elapsed time between “key pressed” and “key released” events
is unpredictable. Hence, we have to write code that neutralizes this variation. Also, when users
press keys on the keyboard, we usually want to give feedback as to which keys have been pressed
(something that you have probably grown to take for granted). Typically, we want to display
some graphical cursor at the screen location where the next input “goes” and, after some key has
been pressed, we typically want to echo the inputted character by displaying its bitmap on the
screen at the cursor location. This logic is implemented in Algorithm 12.12.

Reading a string: Usually, a multi-key input typed by the user is considered final only after the
“enter” key has been pressed, yielding the newline character. And, until the “enter” key is
pressed, the user should be allowed to backspace and erase previously typed characters. The code
that implements this logic and renders its visual effect is given in Algorithm 12.13.

readChar():
 // Read and echo a single character
 display the cursor
 while no key is pressed on the keyboard
 do nothing // wait till a key is pressed
 c = code of currently pressed key
 while a key is pressed
 do nothing // wait for the user to let go
 print c at the current cursor location

 move the cursor one position to the right

 return c

 readLine():
 // Read and echo a “line” (until newline)
 s = empty string
 repeat
 c = readChar()
 if c = newline character
 print newline
 return s
 else if c = backspace character
 remove last character from s
 move the cursor 1 position back
 else
 s = s.append(c)

ALGORITHMS 12.12 and 12.13: Capturing “cooked” keyboard input.

As usual, our input handling solutions are based on a cascading series of abstractions: the high-
level program relies on the readLine abstraction, which relies on the readChar abstraction,
which relies on the keyPressed abstraction, which relies on the hardware.

12.2 The Jack OS Specification

The previous section presented a series of algorithms that address some classic operating system
tasks. In this section we turn to formally specify one particular operating system -- the Jack OS --
in API form. Since the Jack OS can also be viewed as an extension of the Jack programming
language, this documentation duplicates exactly “The Jack Standard Library” section from
Chapter 9. In Chapter 9, the OS specification was intended for programmers who want to use its
abstract services; in this chapter, the OS specification is intended for programmers who have to
implement these services. Technical information and implementation tips follow in Section 3.

The operating system is organized in eight classes:

Chapter 12: Operating System 218

� Math: Provides basic mathematical operations;

� String: Implements the String type and string-related operations;

� Array: Implements the Array type and array-related operations;

� Output: Handles text output to the screen;

� Screen: Handles graphic output to the screen;

� Keyboard: Handles user input from the keyboard;

� Memory: Handles memory operations;
� Sys: Provides some execution-related services.

Math

This class enables various mathematical operations.
� function void init(): for internal use only.

� function int abs(int x): returns the absolute value of x.

� function int multiply(int x, int y): returns the product of x and y.

� function int divide(int x, int y): returns the integer part of x/y.

� function int min(int x, int y): returns the minimum of x and y.

� function int max(int x, int y): returns the maximum of x and y.

� function int sqrt(int x): returns the integer part of the square root of x.

String

This class implements the String data type and various string-related operations.
� constructor String new(int maxLength): constructs a new empty string (of length zero) that

can contain at most maxLength characters.

� method void dispose(): disposes this string.

� method int length(): returns the length of this string.

� method char charAt(int j): returns the character at location j of this string.

� method void setCharAt(int j, char c): sets the j-th element of this string to c.

� method String appendChar(char c): appends c to this string and returns this string.

� method void eraseLastChar(): erases the last character from this string.

� method int intValue(): returns the integer value of this string (or the string prefix until a
non-digit character is detected).

� method void setInt(int j): sets this string to hold a representation of j.

� function char backSpace(): returns the backspace character.

Chapter 12: Operating System 219

� function char doubleQuote(): returns the double quote (“) character.

� function char newLine(): returns the newline character.

Array

This class enables the construction and disposal of arrays.
� function Array new(int size): constructs a new array of the given size.

� method void dispose(): disposes this array.

Output

This class allows writing text on the screen.
� function void init(): for internal use only.

� function void moveCursor(int i, int j): moves the cursor to the j-th column of the i-th row,
and erases the character displayed there.

� function void printChar(char c): prints c at the cursor location and advances the cursor
one column forward.

� function void printString(String s): prints s starting at the cursor location and advances
the cursor appropriately.

� function void printInt(int i): prints i starting at the cursor location and advances the
cursor appropriately.

� function void println(): advances the cursor to the beginning of the next line.

� function void backSpace(): moves the cursor one column back.

Screen

This class allows drawing graphics on the screen. Column indices start at 0 and are left-to-right.
Row indices start at 0 and are top-to-bottom. The screen size is hardware-dependant (in the Hack
platform: 256 rows by 512 columns).

� function void init(): for internal use only.

� function void clearScreen(): erases the entire screen.

� function void setColor(boolean b): sets a color (white=false, black=true) to be used for
all further drawXXX commands.

� function void drawPixel(int x, int y): draws the (x,y) pixel.

� function void drawLine(int x1, int y1, int x2, int y2): draws a line from pixel (x1,y1) to
pixel (x2,y2).

� function void drawRectangle(int x1, int y1, int x2, int y2): draws a filled rectangle whose
top left corner is (x1, y1) and bottom right corner is (x2,y2).

� function void drawCircle(int x, int y, int r): draws a filled circle of radius r<=181 around
(x,y).

Chapter 12: Operating System 220

Keyboard

This class allows reading inputs from a standard keyboard.
� function void init(): for internal use only.

� function char keyPressed(): returns the character of the currently pressed key on the
keyboard; if no key is currently pressed, returns 0.

� function char readChar(): waits until a key is pressed on the keyboard and released, then
echoes the key to the screen and returns the character of the pressed key.

� function String readLine(String message): prints the message on the screen, reads the
line (text until a newline character is detected) from the keyboard, echoes the line to the
screen, and returns its value. This function also handles user backspaces.

� function int readInt(String message): prints the message on the screen, reads the line
(text until a newline character is detected) from the keyboard, echoes the line to the
screen, and returns its integer value (until the first non-digit character in the line is
detected). This function also handles user backspaces.

Memory

This class allows direct access to the main memory of the host platform.
� function void init(): for internal use only.

� function int peek(int address): returns the value of the main memory at this address.

� function void poke(int address, int value): sets the contents of the main memory at this
address to value.

� function Array alloc(int size): finds and allocates from the heap a memory block of the
specified size and returns a reference to its base address.

� function void deAlloc(Array o): De-allocates the given object and frees its memory
space.

Sys

This class supports some execution-related services.
� function void init(): calls the init functions of the other OS classes and then calls the

Main.main() function. For internal use only.

� function void halt(): halts the program execution.

� function void error(int errorCode): prints the error code on the screen and halts.

� function void wait(int duration): waits approximately duration milliseconds and returns.

Chapter 12: Operating System 221

12.3 Implementation

The operating system described in the previous section can be implemented as a collection of
Jack classes. Each OS subroutine can be implemented as a Jack constructor, function, or method.
The API of all these subroutines was given in Section 2, and key algorithms were presented in
Section 1. This section provides some additional hints and suggestions for completing this
implementation. Final technical details and test programs for unit-testing all the OS services are
given in Section 5. Note that most of the subroutines specified in the OS API are rather simple,
requiring straightforward Jack programming. Thus we will focus here only on the implementation
of selected OS subroutines.

Some OS classes require class-level initialization. For example, some mathematical functions can
run quicker if they can use previously calculated values, kept in some static array, constructed
once and for all in the Math class. As a rule, when an OS class Xxx needs some initialization code,
this code should be embedded in a single function called Xxx.init(). Later in this section we
explain how these init() functions are activated when the computer boots up and the OS starts
running.

Math

Math.multiply(), Math.divide(): Algorithms 12.1 and 12.2 are designed to operate on non-
negative integers only. A simple way of handling negative numbers is applying the algorithms on
absolute values and then setting the sign appropriately. For the multiplication algorithm, this is
not really needed: it turns out that if the multiplicands are given in 2’s complement, their product
will be correct with no further ado.

Note that in each iteration j of Algorithm 12.1, the j-th bit of the second number is extracted. We
suggest to encapsulate this operation as follows:

bit(x,j): Returns true if the j-th bit of the integer x is 1 and false otherwise.

The bit(x,j) function can be easily implemented using shifting operations. Alas, Jack does not
support shifting. Instead, to speed up this function implementation in Jack, it may be convenient
to define a fixed static array of length 16, say twoToThe[j], whose j-th location holds the value 2
to the power of j. This array may be initialized once (in Math.init), and then used, via bitwise
Boolean operations, in the implementation of bit(x,j).

In Algorithm 12.2, y is multiplied by a factor of 2 until y>x. A detail that needs to be taken into
account is that y can overflow. The overflow can be detected by noting when y becomes negative.

Math.sqrt(): Since the calculation of 2)2(jy + in Algorithm 12.3 can overflow, the result may
be an abnormally negative number. This problem can be addressed by (efficiently) changing the
algorithm’s if logic to:

 if))2((2 xy j ≤+ and)0)2((2 >+ jy then jyy 2+=

Chapter 12: Operating System 222

String

As explained in section 12.1.4, string objects can be implemented as arrays. In a similar vein, all
the string related services can be implemented as operations on arrays. An important
implementation detail is that the actual length of the string must be maintained throughout these
operations, and that array entries beyond this length are not considered part of the string.

String.intValue, String.setInt: These functions can be implemented using Algorithms 12.4
and 12.5, respectively. Note that both algorithms don’t handle negative numbers -- a detail that
must be handled by the implementation.

All other subroutines in this class are straightforward. Note that the ASCII codes of newline,
backspace and doubleQuote are 128, 129 and 34 respectively.

Array

Note that Array.new() is not a constructor, but rather a function (despite its name). Therefore,
memory space for a new array should be explicitly allocated using a call to Memory.alloc().
Similarly, de-allocation of arrays must be done explicitly using Memory.deAlloc().

Output

Character bitmaps: We suggest using character bitmaps of 11 rows by 8 columns, leading to 23
lines of 64 characters each. Since designing and building bitmaps for all the printable ASCII
characters is quite a burden, we supply predefined bitmaps (except for one or two characters, left
to you as an exercise). Specifically, we supply a skeletal Output class containing Jack code that
defines, for each printable ASCII character, an array that holds its bitmap (implementing a font
that we created). The array consists of 11 entries, each corresponding to a row of pixels. In
particular, the value of entry j is a binary number whose bits represent the 8 pixels that render the
character’s image in the j-th row of its bitmap.

Screen

Screen.drawPixel(): Drawing a pixel on the screen is done by directly accessing the screen’s
memory map using Memory.peek() and Memory.poke(). Recall that the memory map of the
screen on the Hack platform specifies that the pixel at column c and row r
(,) is mapped to the c%16 bit of memory location 5110 ≤≤ c 2550 ≤≤ r 16/3216384 cr +⋅+ .
Notice that drawing a single pixel requires changing a single bit in the accessed word, a task that
can be achieved in Jack using bit-wise operations.

Screen.drawLine():Algorithm 12.8a can potentially lead to overflow. However, the efficiency
improvement suggested in Algorithm 12.8b also eliminates the overflow problem.

Screen.drawCircle(): Likewise, Algorithm 12.9 can potentially lead to overflow. Limiting
circle radii to be at most 181 is a reasonable solution to this problem.

Chapter 12: Operating System 223

Keyboard

In the Hack platform, the memory map of the keyboard is a single 16-bit word located at memory
address 24576.

Keyboard.keyPressed(): This function provides “raw” (direct) access to this memory location
and can be implemented easily using Memory.peek().

Keyboard.readChar, Keyboard.readString: These functions provide “cooked” access to single
character inputs and to string inputs, respectively. Proposed cooking instructions appear in
Algorithms 12.12 and 12.13.

Memory

Memory.peek(), Memory.poke(): These functions are supposed to provide direct access to the
underlying memory. How can this be accomplished? As it turns out, the Jack language includes a
trapdoor that enables programmers to gain complete control of the computer’s memory. This
hacking trick can be exploited to implement peek and poke using plain Jack programming.

The trick is based on an anomalous use of reference variables (pointers). Specifically, the Jack
language does not prevent the programmer from assigning a constant to a reference variable. This
constant can then be treated as an absolute memory address. In particular, when the reference
variable happens to be an array, this trick can give convenient and direct access to the entire
computer memory:

// To create a Jack-level "proxy" of the RAM:
var Array memory;
let memory = 0;
// From this point on we can use code like:
let x = memory[j] // Where j is any RAM address
let memory[j] = y // Where j is any RAM address

PROGRAM 12.14: A trapdoor enabling complete
control of the RAM from Jack.

Following the first two lines of Program 12.14, the base of the memory array points to the first
address in the computer's RAM. To set or get the value of the RAM location whose physical
address is j, all we have to do is manipulate the array entry memory[j]. This will cause the
compiler to manipulate the RAM location whose address is 0+j, which is precisely what is
desired.

As we have pointed out earlier, Jack arrays are not allocated space on the heap at compile-time,
but rather at run-time, when the array's new function is called. Here, however, a new
initialization will defeat the purpose, since the whole idea is to anchor the array in a particular
address rather then let the OS allocate it to an address in the heap that we don't control. In short,
this hacking trick works because we use the array variable without initializing it "properly", as
we would do in normal usage of arrays.

Chapter 12: Operating System 224

Memory.alloc(), Memory.deAlloc(): These functions can be implemented by either
Algorithm 12.6a or 12.6b (using either best-fit or first-fit). The standard implementation of the
VM over the Hack platform specifies that the heap resides at RAM locations 2048-16383.

Sys

Sys.init: An application program written in Jack is a set of classes. One class must be named
Main, and this class must include a function named main. In order to start running the application
program, the Main.main() function should be invoked. Now, it should be understood that the
operating system is itself a program (set of classes). Thus, when the computer boots up, we want
to start running the operating system program first, and then we want the OS to start running the
main program.

With that in mind, the chain of command is implemented as follows. First, the VM specification
(Chapter 8) includes a bootstrap code that automatically invokes a function called Sys.init().
This function, which is assumed to exist in the OS’s Sys class, should then call all the init()
functions of the other OS classes, and then call Main.main(). This latter function is assumed to
exist in the application program.

Sys.wait: This function can be implemented pragmatically, under the limitations of the
simulated Hack platform. In particular, you can use a loop that runs approximately n milliseconds
before it (and the function) returns. You will have to time your specific computer to obtain a one
millisecond wait, as this constant varies from one CPU to another. As a result, your Sys.wait()
function will not be portable, but that's life.

Sys.halt: This function can be implemented by entering an infinite loop.

Chapter 12: Operating System 225

12.4 Perspective

The software library presented in this chapter includes some basic services found in most
operating systems, e.g. managing memory, driving I/O, handling initialization, supplying
mathematical functions not implemented in hardware, and implementing abstract data types like
the string abstraction. We have chosen to call this standard software library an “operating
system” to reflect its two main functions: encapsulating the gory hardware details, omissions, and
idiosyncrasies in a transparent software packaging, and enabling other programs to use its
services via a clean interface. However, the gap between what we have called here an OS and
industrial strength operating systems remains wide.

For starters, our OS lacks some of the very basic components most closely associated with
operating systems. For example, our OS supports neither multi-threading nor multi-processing; in
contrast, the very kernel of most operating systems is devoted to exactly that. Our OS has no
mass storage devices; in contrast, the main data store kept and handled by operating systems is a
file system abstraction. Our OS has neither a “command line” interface (as in a Unix shell or a
DOS window) nor a graphical one (windows, mouse, icons, etc.); in contrast, this is the operating
system aspect that users expect to see and interact with. Numerous other services commonly
found in operating systems are not present in our OS, e.g. security, communication, and more.

Another major difference lies in the interplay between the OS code and the user code. In most
computers, the OS code is considered “privileged” – the hardware platform forbids user code to
perform various operations allowed exclusively to OS code. Consequently, access to operating
system services requires a mechanism that is more elaborate than a simple function call. Further,
programming languages usually wrap these OS services in regular functions or methods. In
contrast, in the Hack platform there is no difference between OS code and user code, and
operating system services run in the same “user mode” as that of application programs.

In terms of efficiency, the algorithms that we presented for multiplication and division were
standard. These algorithms, or variants thereof, are typically implemented in hardware rather than
in software. The running time of these algorithms is O(n) addition operations. Since adding two
n-bit numbers requires O(n) bit operations (gates in hardware), these algorithms end up requiring
O() bit operations. There exist multiplication and division algorithms whose running time is
asymptotically significantly faster than O(), and, for a large number of bits, these algorithms
are more efficient. In a similar fashion, optimized versions of the geometric operations that we
presented (e.g. line- and circle-drawing) are often also implemented in special graphics-
acceleration hardware.

2n
2n

Readers who wish to extend the OS functionality are welcome to do so, as we comment in
Chapter 13.

Chapter 12: Operating System 226

12.5 Project

Objective: Implement the operating system described in the chapter. Each of the OS classes can
be implemented and unit-tested in isolation, and in any particular order.

Resources: The main tool that you need in this project is Jack -- the language in which you will
develop the OS. Therefore, you will also need the supplied Jack compiler, to compile your OS
implementation as well as the supplied test programs. In order to facilitate partial testing of the
OS, you will also need the complete executable OS, consisting of a collection of .vm files (one
for each OS class). Finally, you will need the supplied VM Emulator. This program will be used
as the platform on which the actual test takes place.

Contract: Write a Jack OS implementation and test it using the programs and testing scenarios
described below. Each test program uses a certain subset of OS services.

Testing Strategy

We suggest developing and unit-testing each OS class in isolation. This can be done by compiling
the OS class that you write and then putting the resulting .vm file in a directory that contains the
supplied .vm files of the rest of the OS. In particular, it is recommended to use the routine
described below.

To develop, compile, and test, each OS class Xxx.jack in isolation:

1. Put, in the same directory, the following items: the OS class Xxx.jack that you are
developing, all the supplied OS .vm files, and the relevant supplied test program (a
collection of one or more .jack files);

2. Compile the directory using the supplied Jack compiler. This will result in
compiling your Xxx.jack OS class as well as the class files of the test program. In
the process, a new Xxx.vm file will be created, replacing the originally supplied
OS class. That’s exactly what we want: the directory now contains the executable
test program, the complete OS minus the original Xxx.vm OS class, plus your
version of Xxx.vm.

3. Load the directory’s code (OS + test program) into the VM Emulator;

4. Execute the code and check if the OS services are working properly according to
the guidelines given below for each OS class.

OS Classes and Test Programs

There are eight OS classes: Memory, Array, Math, String, Screen, Keyboard, and Sys. For each
OS class Xxx we supply a skeletal Xxx.jack class file with all the required subroutine signatures,
a corresponding test class named Main.jack, and related test scripts.

Memory, Array, Math: To test your implementation of every one of these OS classes, compile
the relevant directory, execute the supplied test script on the VM Emulator, and make sure that
the comparison with the compare file ends successfully.

Chapter 12: Operating System 227

Note that the supplied test programs don’t comprise a full test of the Memory.alloc and
Memory.deAlloc functions. A complete test of these memory management functions requires
inspecting internal implementation details not visible in user-level testing. Thus it is
recommended to test these two functions using step-by-step debugging in the VM emulator.

String: Execution of the corresponding test program should yield the following output:

Output: Execution of the corresponding test program should yield the following output:

Screen: Execution of the corresponding test program should yield the following output:

Chapter 12: Operating System 228

Keyboard: This OS class is tested using a test program that effects some user-program
interaction. For each function in the Keyboard class (keyPressed, readChar, readLine,
readInt) the program requests the user to press some keyboard keys. If the function is
implemented correctly and the requested keys are pressed, the program prints the text “ok” and
proceeds to test the next function. If not, the program repeats the request for the same function. If
all requests end successfully, the program prints ‘Test ended successfully’, at which point the
screen may look as follows:

Sys: Only two functions in this class can be tested: Sys.init and Sys.wait. The supplied test
program tests the Sys.wait function by requesting the user to press any key, waiting for two
seconds (using Sys.wait) and then printing another message on the screen. The time that elapses
from the moment the key is released until the next message is printed should be two seconds.

The Sys.init function is not tested explicitly. However, recall that it performs all the necessary
OS initializations and then calls the Main.main function of each test program. Therefore, we can
assume that nothing would work properly unless Sys.init is implemented correctly. A simple
way to test Sys.init in isolation is to run Pong using your Sys.vm file.

Complete test: After testing successfully each OS class in isolation, test your entire OS
implementation using the Pong game, whose source code is available in projects/12/Pong. Put
all your OS .jack files in the Pong directory, compile the directory, and execute the game in the
VM emulator. If the game works, then congratulations: you are the proud owner of an operating
system written entirely by you.

