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10. Compiler I: Syntax Analysis1

 
Neither can embellishments of language be found  
without arrangement and expression of thoughts,  

nor can thoughts be made to shine without the light of language. 
  

Cicero (106 BC - 43 BC) 
 

The previous chapter introduced Jack -- a simple object-based programming language whose syntax 
resembles that of Java and C#. In this chapter we start building a compiler for the Jack language. A 
compiler is a program that translates programs from a source language into a target language. The 
translation  process, known as compilation, is conceptually based on two distinct tasks. First, we 
have to understand the syntax of the source program, and, from it, uncover the program’s semantics. 
For example, the parsing of the code can reveal that the program seeks to declare an array or 
manipulate an object. This information enables us to reconstruct the program’s logic using the syntax 
of the target language. The first task, typically called syntax analysis, is described in this chapter; the 
second task --  code generation -- is taken up in the next chapter. 
 
How can we tell that a compiler is capable of “understanding” the language’s syntax?  Well, as long 
as the code generated by the compiler is doing what it is supposed to do, we can optimistically 
assume that the compiler is operating properly. Yet in this chapter we build only the syntax analyzer 
module of the compiler, with no code generation capabilities. If we wish to unit-test the syntax 
analyzer in isolation, we have to contrive some passive way to demonstrate that it “understands” the 
source program. Our solution is to have the syntax analyzer output an XML file whose format 
reflects the syntactic structure of the input program. By inspecting the generated XML output, we 
should be able to ascertain that the analyzer is parsing input programs correctly. 
 
The chapter starts with a Background section that surveys the minimal set of concepts necessary for 
building a syntax analyzer: lexical analysis, context-free grammars, parse trees, and recursive descent 
algorithms for building them. This sets the stage for a Specification section that presents the formal 
grammar of the Jack language and the format of the output that a Jack analyzer is expected to 
generate. The Implementation section proposes a software architecture for constructing a Jack 
analyzer, along with a suggested API. As usual, the final Project section gives step-by-step 
instructions and test programs for actually building and testing the syntax analyzer. In the next 
chapter, this analyzer will be extended  into a full-scale compiler. 
 
Writing a compiler from scratch is a task that brings to bear several fundamental topics in computer 
science. It requires an understanding of language translation and parsing techniques, classical data 
structures like trees and hash tables, and sophisticated recursive compilation algorithms. For all these 
reasons, writing a compiler is also a challenging task. However, by splitting the compiler’s 
construction into two separate projects (or actually four, counting the VM projects as well), and by 
allowing the modular development and unit-testing of each part in isolation, we have turned the 
compiler’s development into a surprisingly manageable and self-contained activity. 
 

                                                 
1 From The Elements of Computing Systems by Nisan & Schocken (draft ed.), MIT Press, 2005, www.idc.ac.il/tecs 
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Why should you go through the trouble of building a compiler? Well, a hands-on grasp of 
compilation internals will turn you into a significantly better high-level programmer. Further, the 
same types of rules and grammars used for describing programming languages are also used for 
specifying the syntax of data sets in diverse applications ranging from computer graphics to database 
management to communications protocols to bioinformatics. Thus, while most programmers will not 
have to develop compilers in their careers, it is very likely that they will be required to parse and 
manipulate files of some complex syntax. These tasks will employ the same concepts and techniques 
used in the parsing of programming languages, as described in this chapter.  
 
10.1 Background 
 
A typical compiler consists of two main modules: syntax analysis and code generation. The syntax 
analysis task is usually divided further into two modules: tokenizing, i.e. grouping of input characters 
into language atoms, and parsing, i.e. attempting to match the resulting atoms stream to the syntax 
rules of the underlying language. Note that these activities are completely independent of the target 
language into which we seek to translate the source program. Since in this chapter we don’t deal with 
code generation, we have chosen to have the syntax analyzer output the parsed structure of the 
compiled program as an XML file. This decision has two benefits. First, the XML file can be easily 
viewed in any web browser, demonstrating that the syntax analyzer is parsing source programs 
correctly. Second, the requirement to output this file explicitly forces us to write the syntax analyzer 
in an architecture that can be later morphed into a full-scale compiler. In particular, in the next 
chapter we will simply replace the routines that generate the passive XML code with routines that 
generate executable VM code, leaving the rest of the compiler’s architecture intact. 
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FIGURE 10.1: The Jack Compiler. Project 10 is an intermediate step, designed 
to localize the development and unit-testing of the syntax analyzer module.

 
 
In this chapter we focus only on the syntax analyzer module of the compiler, whose job is 
“understanding the structure of a program”. This notion needs some explanation. When humans read 
a computer program, they immediately recognize the program’s structure. They can identify where 
classes and methods begin and end, what are declarations, what are statements, what are expressions 
and how they are built, and so on. This understanding is not trivial, since it requires an ability to 
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identify and classify nested patterns: in a typical program, classes contain methods that contain 
statements that contain other statements that contain expressions, and so on. In order to recognize 
these language constructs correctly, humans have to recursively map them on the range of textual 
patterns permitted by the language syntax. 
 
When it comes to understanding a natural language like English, the question of how syntax rules are 
represented in the human brain and whether they are innate or acquired is a subject of intense debate. 
However, if we limit our attention to formal languages -- artifacts whose simplicity hardly justifies 
the title “language” -- we know precisely how to formalize their syntactic structure. In particular, 
programming languages are ususally described using a set of rules called context free grammar. To 
understand -- parse -- a given program means to determine the exact correspondence between the 
program’s text and the grammar’s rules. In order to do so, we first have to transform the program’s 
text into a list of tokens, as we now turn to describe. 
 
Lexical Analysis 
 
In its plainest syntactic form, a program is simply a sequence of characters, stored in a text file. The 
first step in the syntax analysis of a program is to group the characters into tokens (as defined by the 
language syntax), while ignoring white space and comments. This step is usually called lexical 
analysis, scanning, or tokenizing. Once a program has been tokenized, the tokens (rather than the 
characters) are viewed as its basic atoms, and the tokens stream becomes the main input of the 
compiler. Figure 10.2 illustrates the tokenizing of a typical code fragment, taken from a C or Java 
program.  
 

C Code  Tokens

while (count <= 100) { /** some loop */  while
   count++;  (
   // Body of while continues  count
   ...  <=
  100
  )
  {
  count
  ++
  ;
  ...

tokenizing 

 
FIGURE 10.2: Lexical Analysis.

 
As seen in figure 10.2, tokens fall into distinct categories, or types: while is a keyword; count is an 
identifier; <= is an operator, and so on. In general, each programming language specifies the types of 
tokens it allows, as well as the exact syntax rules for combining them into valid programmatic 
structures. For example, some languages may specify that “++” is a valid operator token, while other 
languages may not. In the latter case, an expression containing two consecutive “+” characters will 
be rendered invalid by the compiler. 
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Grammars 
 
Once we have lexically analyzed a program into a stream of tokens, we are now faced with the more 
challenging task of parsing the tokens stream into a formal structure. In other words, we have to 
figure out how to group the tokens into language constructs like variable declarations, statements, 
expressions, and so on. These grouping and classification tasks can be done by attempting to match 
the tokens stream on some pre-defined set of rules known as a grammar. 
 
Almost all programming languages, as well as most other formal languages used for describing the 
syntax of complex file types, can be specified using formalisms known as context free grammars. A 
context-free grammar is a set of rules specifying how syntactic elements in some language can be 
formed from simpler ones. For example, the Java grammar allows us to combine the atoms 
100,count, and <= into the expression count<=100. In a similar fashion, the Java grammar allows us 
to ascertain that the text count<=100 is a valid Java expression. Indeed, each grammar has a dual 
perspective. From a declarative standpoint, the grammar specifies allowable ways to combine tokens, 
also called terminals, into higher-level syntactic elements, also called non-terminals. From an 
analytic standpoint, the grammar is a prescription for doing the reverse: parsing a given input (set of 
tokens resulting from the tokenizing phase) into non-terminals, lower-level non-terminals, and 
eventually terminals that cannot be decomposed any further. Figure 10.3 gives is a typical example. 
 

... 

statement:  whileStatement 
          | ifStatement 
          |   ... // Other statement possibilities 
          |   ‘{’ statementSequence ‘}’                       
 
whileStatement:  ‘while’ ‘(’ expression ‘)’ statement  
 
ifStatement: ... // Definition of ”if”  

 

 while (expression) { 
   statement; 
   statement; 
   while (expression) { 
      while(expression)  
             statement; 
      statement; 
   } 
} 

statementSequence: ‘’     // empty sequence (null) 
                                         | statement ‘;’ statementSequence 

expression: ...      // Definition of ”expression”  

...                                       // More definitions follow 

 

 

 
FIGURE 10.3: A subset of the C language grammar (left) 
and a sample code segment accepted by this grammar (right).

 
In this chapter we specify grammars using the following notation: terminal elements appear in bold 
text enclosed within single quotes, and non-terminal elements in regular font. When there is more 
than one way to parse a non-terminal, the “|” notation is used to list the alternative possibilities. 
Thus, the grammar in figure 10.3 specifies that a statement can be either a whileStatement, or an  
ifStatement, and so on. Typically, grammar rules are highly recursive, and the grammar in figure 10.3 
is no exception. For example, statementSequence is either null, or a single statement followed by a 
semicolon and a statementSequence. This recursive definition can accommodate a sequence of 0, 1, 
2, or any other positive number of semicolon-separated statements. As an exercise, the reader may 
use the grammar in figure 10.3 to ascertain that the text appearing in the right side of the figure 
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constitutes a valid C code. You may start by trying to match the entire text with statement, and work 
your way from there. 
 
Parsing 
 
The act of checking whether a grammar “accepts” an input text as valid is called parsing. As we 
noted earlier, parsing a given text means determining the exact correspondence between the text and 
the rules of a given grammar. Since the grammar rules are hierarchical, the output generated by the 
parser can be described in a tree-oriented data structure called parse tree or derivation tree. Figure 
10.4 gives a typical example. 
 

while . . .( )count <= 100 { count ++

statement

whileStatement

expression

statementSequence

statement

;

statement statementSequence

C code

while (count<=100) {
  count++;
  // ...

Tokenized
(parser's input):

while
(
count
<=
100
)
{
count
++
;
...

statement:  whileStatement | ifStatement

          | ...  |   '{' statementSequence '}'

whileStatement: 'while' '(' expression ')'
                        statement
ifStatement: ... // Definition of "if"

statementSequence: ''  // Null

             | statement ';' statementSequence

expression: ...  // Definition of "expression"

C language grammar (partial)

 
 

FIGURE 10.4: Parse tree of the program from figure 10.2 according to the 
grammar in figure 10.3. Solid triangles represent lower-level parse trees. 

 
Note that as a side effect of the parsing process, the entire syntactic structure of the input text is 
uncovered. Some compilers represent this tree by an explicit data structure that is further used for 
code generation and error reporting. Other compilers (including the one that we will build) represent 
the program’s structure implicitly, generating code and reporting errors on the fly. Such compilers 
don’t have to hold the entire program structure in memory, but only the sub-tree associated with the 
presently parsed element. More about this, later. 
 
Recursive descent parsing: There are several algorithms for constructing parse trees. The top-down 
approach, also called recursive descent parsing, attempts to parse the tokens stream recursively, 
using the nested structure prescribed by the language grammar. Let us consider how a parser 
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program that implements this strategy can be written. For every rule in the grammar describing a 
non-terminal, we can equip the parser program with a recursive routine designed to parse that non-
terminal. If the non-terminal consists of terminal atoms only, the routine can simply process them. 
Otherwise, for every non-terminal building block in the rule’s right hand side, the routine can 
recursively call the routine designed to parse this non-terminal. The process will continue 
recursively, until all the terminal atoms have been reached and processed.  
 
To illustrate, suppose we have to write a recursive descent parser that implements the grammar in 
figure 10.3. Since the grammar has five derivation rules, the parser implementation can consist of 
five major routines: parseStatement(), parseWhileStatement(), parseIfStatement(), 
parseStatementSequence(), and parseExpression(). The parsing logic of these routines should 
follow the syntactic patterns appearing in the right hand sides of the corresponding grammar rules. 
Thus parseStatement() should probably start its processing by determining what is the first token 
in the input. Having established the token’s identity, the routine could determine which statement we 
are in, and then call the parsing routine associated with this statement type. 
 
For example, if the input stream were Program 1, the routine should establish that the first token is 
while, and then call the parseWhileStatement() routine. According to the corresponding grammar 
rule, this routine should next attempt to read the terminals “while” and “(“, and then call 
parseExpression() to parse the non-terminal expression. After parseExpression() would return 
(having parsed the “count<=100” sequence in our example), the grammar dictates that 
parseWhileStatement() should attempt to read the terminal “)” and then recursively call 
parseStatement(). This call would continue recursively, until at some point only terminal atoms 
are read. Clearly, the same logic can also be used for detecting syntax errors in the source program. 
The better the compiler, the better will be its error diagnostics. 
 
LL(0) grammars: Recursive parsing algorithms are simple and elegant. The only possible 
complication arises when there are several alternatives for parsing non-terminals. For example, when 
parseStatement() attempts to parse a statement, it does not know in advance whether this 
statement is a while-statement, an if-statement, or a bunch of statements enclosed within curly-
brackets. The span of possibilities is determined by the grammar, and in some cases it is easy to tell 
which alternative we are in. For example, consider the grammar in figure 10.3. If the first token is 
“while”, it is clear that we are faced with a while statement, since this is the only alternative in the 
grammar that starts with a “while” token. This observation can be generalized as follows: whenever 
a non-terminal has several alternative derivation rules, the first token suffices to resolve without 
ambiguity which rule to use. Grammars that have this lingual property are called LL(0). These 
grammars can be handled simply and neatly by recursive descent algorithms. 
 
When the first token does not suffice to resolve the element’s type, it is possible that a “look ahead” 
to the next token will settle the dilemma. Such parsing can obviously be done, but as we need to look 
ahead at more and more tokens down the stream, things start getting complicated. The Jack language 
grammar, which we now turn to present, is almost LL(0), and thus it can be handled rather simply by 
a recursive descent parser. The only exception is the parsing of expressions, where just a little look 
ahead is necessary. 
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10.2 Specification 
 
This section has two distinct parts. First, we specify the Jack language’s grammar. Next, we specify 
a syntax analyzer designed to parse programs according to this grammar. 
 
10.2.1 The Jack Language Grammar 
 
The functional specification of the Jack language given in Chapter 9 was aimed at Jack 
programmers. We now turn to give a formal specification of the Jack language, aimed at Jack 
compiler developers. Our grammar specification is based on the following conventions: 
 

'xxx' : Quoted boldface is used for tokens that appear verbatim (“terminals”); 

xxx : Regular typeface is used for names of language constructs (“non-terminals”); 

( ) : Parentheses are used for grouping of language constructs; 

x | y : Indicates that either x or y can appear; 

x? : Indicates that x appears 0 or 1 times; 

x* : Indicates that x appears 0 or more times. 
 
The Jack language syntax is given in the grammar in figure 10.5, using the above conventions. 
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Lexical elements:    The Jack language includes five types of terminal elements (tokens): 

keyword: 'class' | 'constructor' | 'function' | 'method' | 'field' | 'static' |  
'var' | 'int' | 'char' | 'boolean' | 'void' | 'true' | 'false' | 'null' | 'this' |  
'let' | 'do' | 'if' | 'else' | 'while' | 'return' 

symbol: '{' | '}' | '(' | ')' | '[' | ']' | '. ' | ', ' | '; ' | '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' |  '~' 
integerConstant: A decimal number in the range 0 .. 32767. 

StringConstant '"' A sequence of Unicode characters not including double quote or newline '"' 
identifier: A sequence of letters, digits, and underscore ( '_' ) not starting with a digit. 

Program structure: A Jack program is a collection of classes, each appearing in a separate file. 
The compilation unit is a class. A class is a sequence of tokens structured  
according to the following context free syntax: 

class: 'class' className '{' classVarDec*  subroutineDec* '}' 
classVarDec: ('static' | 'field' ) type varName (',' varName)*  ';' 

type: 'int' | 'char' | 'boolean' | className 
subroutineDec: ('constructor' | 'function' | 'method')  ('void' | type) subroutineName 

 '(' parameterList ')' subroutineBody 
parameterList: ( (type varName)  (',' type varName)*)? 

subroutineBody: '{' varDec* statements '}' 
varDec: 'var' type varName (',' varName)* ';' 

className: identifier 
subroutineName: identifier 

varName: identifier 

Statements:  
statements: statement* 
statement: letStatement | ifStatement | whileStatement | doStatement | returnStatement  

letStatement: 'let'  varName ('[' expression ']')? '=' expression ';' 
ifStatement: 'if' '(' expression ')' '{' statements '}'  ( 'else' '{' statements '}' )? 

whileStatement: 'while' '(' expression ')' '{' statements '}' 
doStatement: 'do'  subroutineCall ';' 

ReturnStatement 'return'  expression? ';' 

Expressions:  
expression: term (op term)* 

term: integerConstant | stringConstant | keywordConstant | varName |  
varName '[' expression ']' | subroutineCall  | '(' expression ')' | unaryOp term 

subroutineCall: subroutineName '(' expressionList ')' | ( className | varName) '.' subroutineName 
 '(' expressionList ')' 

expressionList: (expression (',' expression)* )? 
op: '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' 

unaryOp: '-' | '~'  
KeywordConstant: 'true' | 'false' | 'null' | 'this' 

 
FIGURE 10.5: Complete grammar of the Jack language
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10.2.2 A Syntax Analyzer for the Jack Language 
 
The main purpose of the syntax analyzer is to read a Jack program and “understand” its syntactic 
structure according to the Jack grammar. By “understanding” we mean that the syntax analyzer must 
know, at each point in the parsing process, the structural identity of the program element that it is 
currently reading, i.e. whether it is an expression, a statement, a variable name, and so on. The 
syntax analyzer must possess this syntactic knowledge in a complete recursive sense. Without it, it 
will be impossible to move on to code generation --  the ultimate goal of the overall compiler. 
 
The fact that the syntax analyzer “understands” the programmatic structure of the input can be 
demonstrated by having it print the processed text in some well-structured and easy to read format. 
One can think of several ways to cook up such a demonstration. In this book, we decided to have the 
syntax analyzer output an XML file whose marked-up format reflects the syntactic structure of the 
underlying program. By viewing this XML output file  -- a task that can be conveniently done with 
any web browser -- one should be able to tell right away if the syntax analyzer is doing the job or 
not. 
 
The Syntax Analyzer’s Input 
 
The Jack syntax analyzer accepts a single command line parameter, as follows: 
 

prompt> JackAnalyzer source 
 
Where source is either a file name of the form Xxx.jack (the extension is mandatory) or a directory 
name containing one or more .jack files (in which case there is no extension). The syntax analyzer 
compiles each Xxx.jack file into a file named Xxx.xml, created in the same directory in which the 
source file is located. If source is a directory name, each .jack file located in it is compiled, creating 
a corresponding .xml file in the same directory.  
 
Each Xxx.jack file is a stream of characters. This stream should be tokenized into a stream of tokens 
according to the rules specified by the lexical elements of the Jack language (see top of figure 10.5). 
The tokens may be separated by an arbitrary number of space characters, newline characters and 
comments, which are ignored. Comments are of the standard formats  /* comment until closing 
*/ , /** API comment */, and  // comment to end of line. 
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The Syntax Analyzer’s Output 
 
Recall that the development of the Jack compiler is split into two stages (see figure 10.1), starting 
with the syntax analyzer. In this chapter, we wish the syntax analyzer to emit an XML description of 
the input program, as illustrated in figure 10.6. In order to do so, the syntax analyzer has to recognize 
two major types of language constructs: terminal elements, and non-terminal elements. These 
constructs are handled as follows. 
  
Non-terminals: Whenever a non-terminal language element of type xxx is encountered, the syntax 
analyzer should generate the marked-up output: 
 

<xxx> 
           Recursive code for the body of the xxx element. 
</xxx> 

 
Where xxx is one of the following (and only the following) non-terminals of the Jack grammar: 
 

• class, classVarDec, subroutineDec, parameterList, subroutineBody, varDec; 
• statements, whileSatement, ifStatement, returnStatement, 

letStatement, doStatement;  
• expression, term, expressionList. 

 
Terminals: Whenever a terminal language element of type xxx is encountered, the syntax analyzer 
should generate the marked-up output: 
 

 <xxx> terminal </xxx> 
 
Where xxx is one of the five token types recognized by the Jack language (as specified in the Jack 
grammar’s “lexical elements” section): keyword, symbol, integerConstant, stringConstant, or 
identifier. 
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Analyzer’s input (Jack code) Analyzer’s output (XML code) 
 
Class Bar { 
   method Fraction foo(int y) { 
       var int temp; // a variable 
       let temp = (xxx+12)*-63; 
       ... 
   ... 

 
<class> 
  <keyword> class </keyword>  
  <identifier> Bar </identifier> 
  <symbol> { </symbol> 
  <subroutineDec> 
    <keyword> method </keyword>     

     <identifier> Fraction </identifier> 
    <identifier> foo </identifier> 
    <symbol> ( </symbol> 
    <parameterList> 
      <keyword> int </keyword> 
      <identifier> y </identifier> 
    </parameterList> 
    <symbol> ) </symbol> 
    <subroutineBody> 
      <symbol> { </symbol> 
      <varDec> 
        <keyword> var </keyword> 
        <keyword> int </keyword> 
        <identifier> temp </identifier> 
        <symbol> ; </symbol> 
      </varDec> 
      <statements> 
        <letStatement> 
          <keyword> let </keyword> 
          <identifier> temp </identifier> 
          <symbol> = </symbol> 
          <expression> 
            <term> 
              <symbol> ( </symbol> 
              <expression> 
                <term> 
                  <identifier> xxx </identifier> 
                </term> 
                <symbol> + </symbol> 
                <term> 
                  <integerConstant> 12 
                  </integerConstant> 
                </term> 
              </expression> 
              <symbol> ) </symbol> 
            </term> 
            <symbol> * </symbol> 
            <term> 
              <symbol> - </symbol> 
              <term> 
                <integerConstant> 63 
                </integerConstant> 
              </term> 
            </term> 
          </expression> 
         <symbol> ; </symbol> 
       </letStatement> 
         ... 
 

Syntax Analyzer 

 
 

FIGURE 10.6: Jack Analyzer in action
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Figure 10.6 should evoke some sense of déjà vu. Earlier in the chapter we noted that the structure of 
a program can be analyzed into a parse tree. And indeed, XML output is simply a textual description 
of a tree. In particular, note that in a parse tree, the non-terminal nodes form a “super structure” that 
describes how the tree’s terminal nodes (the tokens) are grouped into language constructs. This 
pattern is mirrored in the XML output, where non-terminal XML elements describe how terminal 
XML items are arranged. In a similar fashion, the tokens generated by the tokenizer form the lowest 
level of the XML output, just as they form the terminal leaves of the program’s parse tree. 
 
Code generation: We have just finished specifying the analyzer’s XML output. In the next chapter 
we will replace the software that generates this output with software that generates executable VM 
code, leading to a full-scale Jack compiler. 
 
10.3 Implementation 
 
Section 2 gave all the information necessary to build a syntax analyzer for the Jack language, without 
any implementation details. This section describes a proposed software architecture for the syntax 
analyzer. We suggest arranging the implementation in three modules: 

� JackAnalyzer:   Top level driver that sets up and invokes the other modules; 

� JackTokenizer:      Tokenizer; 

� CompilationEngine: Recursive top-down parser. 
 
These modules are designed to handle the language’s syntax. In the next chapter we will extend this 
architecture with two additional modules that handle the language’s semantics: a symbol table and a 
VM-code writer. This will complete the construction of a full-scale compiler for the Jack language. 
Since the module that drives the parsing process in this project will also drive the overall compilation 
in the next project, we call it CompilationEngine. 
 
The JackAnalyzer Module 
 
The analyzer program operates on a given source, where source is either a file name of the form 
Xxx.jack or a directory name containing one or more such files. For each source Xxx.jack file, the 
analyzer goes through the following logic: 

1. Create a JackTokenizer from the Xxx.jack input file; 

2. Create an output file called Xxx.xml and prepare it for writing; 

3. Use the CompilationEngine to compile the input JackTokenizer into the output 
file. 
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The JackTokenizer Module 

 
JackTokenizer: Removes all comments and white space from the input stream and breaks it into Jack-
language tokens, as specified by the Jack grammar. 

Routine Arguments Returns Function 

Constructor 
 

input file / 
stream 

-- Opens the input file/stream and gets ready 
to tokenize it. 

hasMoreTokens -- Boolean Do we have more tokens in the input? 

advance -- -- Gets the next token from the input and 
makes it the current token. This method 
should only be called if hasMoreTokens() 
is true. Initially there is no current token. 

tokenType -- KEYWORD, SYMBOL, 
IDENTIFIER, 
INT_CONST, 
STRING_CONST 

Returns the type of the current token. 

keyWord -- CLASS, METHOD, 
FUNCTION, 
CONSTRUCTOR, INT, 
BOOLEAN, CHAR, VOID, 
VAR, STATIC, FIELD, 
LET, DO, IF, ELSE, 
WHILE, RETURN, TRUE, 
FALSE, NULL, THIS 

Returns the keyword which is the current 
token. Should be called only when 
tokenType() is KEYWORD. 

symbol -- Char Returns the character which is the current 
token. Should be called only when 
tokenType() is SYMBOL. 

identifier -- String Returns the identifier which is the current 
token. Should be called only when 
tokenType() is IDENTIFIER 

intVal  Int Returns the integer value of the current 
token. Should be called only when 
tokenType() is INT_CONST 

stringVal  String Returns the string value of the current 
token, without the double quotes. Should 
be called only when tokenType() is 
STRING_CONST. 
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The CompilationEngine Module 

 
CompilationEngine: Effects the actual compilation output. Gets its input from a JackTokenizer and 
emits its parsed structure into an output file/stream. The output is generated by a series of compilexxx() 
routines, one for every syntactic element xxx of the Jack grammar. The contract between these routines is 
that each compilexxx() routine should read the syntactic construct xxx from the input, advance() the 
tokenizer exactly beyond xxx, and output the parsing of xxx. Thus, compilexxx()may only be called if 
indeed xxx is the next syntactic element of the input.  

In the first version of the compiler, described in Chapter 10, this module emits a structured printout of the 
code, wrapped in XML tags. In the final version of the compiler, described in Chapter 11, this module 
generates executable VM code. In both cases, the parsing logic and module API are exactly the same. 

Routine Arguments Returns Function 

Constructor 
 

Input 
stream/file 

Output 
stream/file 

-- Creates a new compilation engine with the 
given input and output. The next routine 
called must be compileClass(). 

CompileClass -- -- Compiles a complete class. 

CompileClassVarDec -- -- Compiles a static declaration or a field  
declaration. 

CompileSubroutine 

 
-- -- Compiles a complete method, function, or 

constructor. 

compileParameterList -- -- Compiles a (possibly empty) parameter list, 
not including the enclosing “()”. 

compileVarDec -- -- Compiles a var declaration. 

compileStatements -- -- Compiles a sequence of statements, not 
including the enclosing “{}”. 

compileDo -- -- Compiles a do statement. 

compileLet -- -- Compiles a let statement. 

compileWhile -- -- Compiles a while statement. 

compileReturn -- -- Compiles a return statement. 

compileIf -- -- Compiles an if statement,  
possibly with a trailing else clause. 

 
(the module API continues on the next page)
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CompileExpression -- -- Compiles an expression. 

CompileTerm -- -- Compiles a term. This routine is faced with a 
slight difficulty when trying to decide 
between some of the alternative parsing rules. 
Specifically, if the current token is an 
identifier, the routine must distinguish 
between a variable, an array entry, and a 
subroutine call. A single look-ahead token, 
which may be one of “[“, “(“, or “.”  
suffices to distinguish between the three 
possibilities. Any other token is not part of 
this term and should not be advanced over. 

CompileExpressionList -- -- Compiles a (possibly empty) comma-
separated list of expressions. 

 
 
10.4 Perspective 
 
Although it is convenient to describe the structure of computer programs using parse trees and XML 
files, it’s important to understand that compilers don’t necessarily have to maintain such data 
structures explicitly. For example, the parsing algorithm described in this chapter runs “on-line” – it 
parses the input as it reads it, and does not keep the entire input program in memory. There are 
essentially two types of strategies for doing such parsing. The simpler strategy works top-down, and 
this is the one presented in this chapter. The more advanced algorithms, which work bottom-up, were 
not described here since they require a non-trivial elaboration of theory. 
 
Indeed, in this chapter we have side-stepped almost all the formal language theory studied in typical 
compilation courses. We were able to do so by choosing a very simple syntax for the Jack language -
- a syntax that can be easily compiled using recursive descent techniques. For example, the Jack 
grammar does not mandate the usual operator precedence in expressions evaluation (multiplication 
before addition, and so on). This enabled us to avoid parsing algorithms which are more powerful yet 
much more technical than the elegant top-down parsing techniques presented in the chapter. 
 
Another topic which was hardly mentioned in the chapter is how the syntax of languages is specified 
in general. There is a rich theory called formal languages that discusses properties of classes of 
languages, as well as meta-languages and formalisms for specifying them. This is also the point 
where computer science meets the study of human languages, leading to the vibrant area of research 
known as computational linguistics. 
 
Finally, it is worth mentioning that syntax analyzers are not stand alone programs, and are rarely 
written from scratch. Instead, programmers usually build tokenizers and parsers using a variety of 
“compiler generator” tools like  LEX (for lexical analysis) and YACC (for Yet Another Compiler 
Compiler). These utilities receive as input a context free grammar, and produce as output syntax 
analysis code capable of tokenizing and parsing programs written in that grammar. The generated 
code can then be customized to fit the specific compilation needs of the application at hand. 
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Following the “show me” spirit of this book, we have chosen not to use such black boxes in the 
implementation of our compiler, but rather build everything from the ground up. 
 
 
10.5 Project 
 
The compiler construction spans two projects: 10 and 11. This section describes how to build the 
syntax analyzer described in this chapter. In the next chapter we will extend this analyzer into a full-
scale Jack compiler. 
 
Objective: Build a syntax analyzer that parses Jack programs according to the Jack grammar. The 
analyzer’s output should be written in XML, as defined in the Specification section. 
 
Resources: The main tool in this project is the programming language in which you will implement 
the syntax analyzer. You will also need the supplied TextComparer utility, which allows comparing 
the output files generated by your analyzer to the compare files supplied by us. You may also want to 
inspect the generated and supplied output files using an  XML viewer (any standard web browser 
should do the job). 
 
Contract: Write the syntax analyzer program in two stages: tokenizing and parsing. Use it to parse 
all the .jack files mentioned below. For each source .jack file, your analyzer should generate an 
.xml output file. The generated files should be identical to the .xml compare-files supplied by us.  
 
Test Programs 
 
The syntax analyzer’s job is to parse programs written in the Jack language. Thus, a reasonable way 
to test your analyzer it is to have it parse several representative Jack programs. We supply two such 
test programs, called Square Dance and Array Test. The former includes all the features of the Jack 
language except for array processing, which appears in the latter. We also provide a simpler version 
of the of the Square Dance program, as explained below. 
 
For each one of the three programs, we supply all the Jack source files comprising the program. For 
each such Xxx.jack file, we supply two compare files named XxxT.xml and Xxx.xml. These files 
contain, respectively, the output that should be produced by a tokenizer and by a parser applied to 
Xxx.jack. 

� Square Dance (projects/10/Square): A trivial interactive “game” that enables moving a black 
square around the screen using the keyboard’s four arrow keys. 

� Expressionless Square Dance (projects/10/ExpressionlessSquare): An identical copy of 
Square Dance, except that each expression in the original program is replaced with a single 
identifier (some variable name in scope). For example, the Square class has a method that 
increases the size of the graphical square object by 2 pixels, as long as the new size does not 
cause the square image to spill over the screen’s boundaries. The code of this method is as 
follows: 
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Square Class Code  ExpressionlessSquare Class Code 

method void incSize() { 
  if (((y + size) < 254) & ((x + size) < 510) {  
         do erase(); 
    let size = size + 2; 
    do draw(); 
  } 
  return; 
} 

 
method void incSize() { 
  if (x) { 
    do erase(); 
    let size=size; 
    do draw(); 
  } 
  return; 
} 

 
Note that the replacement of expressions with variables has resulted in a nonsensical program 
that cannot be compiled by the supplied Jack Compiler. Still, it follows all the Jack grammar 
rules. The expressionless files have the same names as those of the original files, but they are 
located in a separate directory. 

� Array test (projects/10/Square): A single-class Jack program that computes the average of a 
user-supplied sequence of integers using array notation and array manipulation. 

 
Experimenting with the test programs: If you want, you can compile the Square Dance and Test 
Array programs using the supplied Jack compiler, then use the supplied VM Emulator to run the 
compiled code. These activities are completely irrelevant to this project, but they serve to highlight 
the fact that the test programs are not just plain text (although this is perhaps the best way to think 
about them in the context of this project). 
 
Stage 1: Tokenizer 
 
First, implement the Jack tokenizer (JackTokenizer module specified in Section 10.3). When 
applied to a text file containing Jack code, the tokenizer should produce a list of tokens, each printed 
in a separate line along with its classification: symbol, keyword, identifier, integer constant, or string 
constant. The classification should be recorded using XML tags.  Here is an example: 
 

Source Code  Tokenizer Output 
if (x < 153) {let city = ”Paris”;}  

  

<tokens>  
  <keyword> if </keyword>  
  <symbol> ( </symbol>  
  <identifier> x </identifier>  
  <symbol> &lt; </symbol>  
  <integerConstant> 153 </integerConstant> 
  <symbol> ) </symbol>  
  <symbol> { </symbol>  
  <keyword> let </keyword>  
  <identifier> city </identifier>  
  <symbol> = </symbol>  
  <stringConstant> Paris </stringConstant> 
  <symbol> ; </symbol>  
  <symbol> } </symbol>  
</tokens> 

 
Note that in the case of string constants, the tokenizer throws away the double quote characters. 
That’s OK. 
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The tokenizer’s output has two “features” dictated by XML conventions. First, an XML file must be 
enclosed within some begin and end tags, and that’s why the  <tokens> and </tokens> tags were 
added to the output. Second, four of the symbols used in the Jack language (<, >, ", &) are also used 
for XML markup, and thus they cannot appear as data in XML files. To solve the problem, we 
require the tokenizer to output these tokens as &lt;, &gt;, &quot;, and &amp;, respectively. For 
example, in order for the text “<symbol> < </symbol>” to be displayed properly in a web browser, 
the source XML should be written as “<symbol> &lt; </symbol>”. 
 
Testing Your Tokenizer:  

� Test your tokenizer on the Square Dance and Test Array programs. There is no need to test it on 
the expressionless version of the former. 

� For each source file Xxx.jack, have your tokenizer give the output file the name XxxT.xml. 
Apply your tokenizer to every class file in the test programs, then use the supplied 
TextComparer utility to compare the generated output to the supplied .xml compare files. 

� Since the output files generated by your tokenizer will have the same names and extensions as 
those of the supplied compare files, we suggest putting them in separate directories. 

 
Stage 2: Parser 
 
Next, implement the Compilation Engine (CompilationEngine module specified in Section 10.3). 
Write each method of the engine, as specified in the API, and make sure that it emits the correct 
XML output. We recommend to start by writing a compilation engine that handles everything except 
expressions, and test it on the expressionless Square Dance program only. Next, extend the parser to 
handle expressions as well, and proceed to test it on the Square Dance and Array Test programs. 
 
Testing Your Parser:  

� Apply your JackAnalyzer to the supplied test programs, then use the supplied TextComparer 
utility to compare the generated output to the supplied .xml compare files. 

� Since the output files generated by your analyzer will have the same names and extensions as 
those of the supplied compare files, we suggest putting them in separate directories. 

� Note that the indentation of the XML output is only for readability. Web browsers and the 
supplied TextComparer utility ignore white space. 

 


