
Chapter 10: Compiler I: Syntax Analysis 165

10. Compiler I: Syntax Analysis1

Neither can embellishments of language be found
without arrangement and expression of thoughts,

nor can thoughts be made to shine without the light of language.

Cicero (106 BC - 43 BC)

The previous chapter introduced Jack -- a simple object-based programming language whose syntax
resembles that of Java and C#. In this chapter we start building a compiler for the Jack language. A
compiler is a program that translates programs from a source language into a target language. The
translation process, known as compilation, is conceptually based on two distinct tasks. First, we
have to understand the syntax of the source program, and, from it, uncover the program’s semantics.
For example, the parsing of the code can reveal that the program seeks to declare an array or
manipulate an object. This information enables us to reconstruct the program’s logic using the syntax
of the target language. The first task, typically called syntax analysis, is described in this chapter; the
second task -- code generation -- is taken up in the next chapter.

How can we tell that a compiler is capable of “understanding” the language’s syntax? Well, as long
as the code generated by the compiler is doing what it is supposed to do, we can optimistically
assume that the compiler is operating properly. Yet in this chapter we build only the syntax analyzer
module of the compiler, with no code generation capabilities. If we wish to unit-test the syntax
analyzer in isolation, we have to contrive some passive way to demonstrate that it “understands” the
source program. Our solution is to have the syntax analyzer output an XML file whose format
reflects the syntactic structure of the input program. By inspecting the generated XML output, we
should be able to ascertain that the analyzer is parsing input programs correctly.

The chapter starts with a Background section that surveys the minimal set of concepts necessary for
building a syntax analyzer: lexical analysis, context-free grammars, parse trees, and recursive descent
algorithms for building them. This sets the stage for a Specification section that presents the formal
grammar of the Jack language and the format of the output that a Jack analyzer is expected to
generate. The Implementation section proposes a software architecture for constructing a Jack
analyzer, along with a suggested API. As usual, the final Project section gives step-by-step
instructions and test programs for actually building and testing the syntax analyzer. In the next
chapter, this analyzer will be extended into a full-scale compiler.

Writing a compiler from scratch is a task that brings to bear several fundamental topics in computer
science. It requires an understanding of language translation and parsing techniques, classical data
structures like trees and hash tables, and sophisticated recursive compilation algorithms. For all these
reasons, writing a compiler is also a challenging task. However, by splitting the compiler’s
construction into two separate projects (or actually four, counting the VM projects as well), and by
allowing the modular development and unit-testing of each part in isolation, we have turned the
compiler’s development into a surprisingly manageable and self-contained activity.

1 From The Elements of Computing Systems by Nisan & Schocken (draft ed.), MIT Press, 2005, www.idc.ac.il/tecs

http://www.idc.ac.il/tecs

Chapter 10: Compiler I: Syntax Analysis 166

Why should you go through the trouble of building a compiler? Well, a hands-on grasp of
compilation internals will turn you into a significantly better high-level programmer. Further, the
same types of rules and grammars used for describing programming languages are also used for
specifying the syntax of data sets in diverse applications ranging from computer graphics to database
management to communications protocols to bioinformatics. Thus, while most programmers will not
have to develop compilers in their careers, it is very likely that they will be required to parse and
manipulate files of some complex syntax. These tasks will employ the same concepts and techniques
used in the parsing of programming languages, as described in this chapter.

10.1 Background

A typical compiler consists of two main modules: syntax analysis and code generation. The syntax
analysis task is usually divided further into two modules: tokenizing, i.e. grouping of input characters
into language atoms, and parsing, i.e. attempting to match the resulting atoms stream to the syntax
rules of the underlying language. Note that these activities are completely independent of the target
language into which we seek to translate the source program. Since in this chapter we don’t deal with
code generation, we have chosen to have the syntax analyzer output the parsed structure of the
compiled program as an XML file. This decision has two benefits. First, the XML file can be easily
viewed in any web browser, demonstrating that the syntax analyzer is parsing source programs
correctly. Second, the requirement to output this file explicitly forces us to write the syntax analyzer
in an architecture that can be later morphed into a full-scale compiler. In particular, in the next
chapter we will simply replace the routines that generate the passive XML code with routines that
generate executable VM code, leaving the rest of the compiler’s architecture intact.

Jack
Program

Toke-
nizer Parser

Code
Gene

-ration

Syntax Analyzer

Jack Compiler

VM
code

XML
code

(Project 10)

(Project 11)

FIGURE 10.1: The Jack Compiler. Project 10 is an intermediate step, designed
to localize the development and unit-testing of the syntax analyzer module.

In this chapter we focus only on the syntax analyzer module of the compiler, whose job is
“understanding the structure of a program”. This notion needs some explanation. When humans read
a computer program, they immediately recognize the program’s structure. They can identify where
classes and methods begin and end, what are declarations, what are statements, what are expressions
and how they are built, and so on. This understanding is not trivial, since it requires an ability to

Chapter 10: Compiler I: Syntax Analysis 167

identify and classify nested patterns: in a typical program, classes contain methods that contain
statements that contain other statements that contain expressions, and so on. In order to recognize
these language constructs correctly, humans have to recursively map them on the range of textual
patterns permitted by the language syntax.

When it comes to understanding a natural language like English, the question of how syntax rules are
represented in the human brain and whether they are innate or acquired is a subject of intense debate.
However, if we limit our attention to formal languages -- artifacts whose simplicity hardly justifies
the title “language” -- we know precisely how to formalize their syntactic structure. In particular,
programming languages are ususally described using a set of rules called context free grammar. To
understand -- parse -- a given program means to determine the exact correspondence between the
program’s text and the grammar’s rules. In order to do so, we first have to transform the program’s
text into a list of tokens, as we now turn to describe.

Lexical Analysis

In its plainest syntactic form, a program is simply a sequence of characters, stored in a text file. The
first step in the syntax analysis of a program is to group the characters into tokens (as defined by the
language syntax), while ignoring white space and comments. This step is usually called lexical
analysis, scanning, or tokenizing. Once a program has been tokenized, the tokens (rather than the
characters) are viewed as its basic atoms, and the tokens stream becomes the main input of the
compiler. Figure 10.2 illustrates the tokenizing of a typical code fragment, taken from a C or Java
program.

C Code Tokens

while (count <= 100) { /** some loop */ while
 count++; (
 // Body of while continues count
 ... <=
 100
)
 {
 count
 ++
 ;
 ...

tokenizing

FIGURE 10.2: Lexical Analysis.

As seen in figure 10.2, tokens fall into distinct categories, or types: while is a keyword; count is an
identifier; <= is an operator, and so on. In general, each programming language specifies the types of
tokens it allows, as well as the exact syntax rules for combining them into valid programmatic
structures. For example, some languages may specify that “++” is a valid operator token, while other
languages may not. In the latter case, an expression containing two consecutive “+” characters will
be rendered invalid by the compiler.

Chapter 10: Compiler I: Syntax Analysis 168

Grammars

Once we have lexically analyzed a program into a stream of tokens, we are now faced with the more
challenging task of parsing the tokens stream into a formal structure. In other words, we have to
figure out how to group the tokens into language constructs like variable declarations, statements,
expressions, and so on. These grouping and classification tasks can be done by attempting to match
the tokens stream on some pre-defined set of rules known as a grammar.

Almost all programming languages, as well as most other formal languages used for describing the
syntax of complex file types, can be specified using formalisms known as context free grammars. A
context-free grammar is a set of rules specifying how syntactic elements in some language can be
formed from simpler ones. For example, the Java grammar allows us to combine the atoms
100,count, and <= into the expression count<=100. In a similar fashion, the Java grammar allows us
to ascertain that the text count<=100 is a valid Java expression. Indeed, each grammar has a dual
perspective. From a declarative standpoint, the grammar specifies allowable ways to combine tokens,
also called terminals, into higher-level syntactic elements, also called non-terminals. From an
analytic standpoint, the grammar is a prescription for doing the reverse: parsing a given input (set of
tokens resulting from the tokenizing phase) into non-terminals, lower-level non-terminals, and
eventually terminals that cannot be decomposed any further. Figure 10.3 gives is a typical example.

...

statement: whileStatement
 | ifStatement
 | ... // Other statement possibilities
 | ‘{’ statementSequence ‘}’

whileStatement: ‘while’ ‘(’ expression ‘)’ statement

ifStatement: ... // Definition of ”if”

 while (expression) {
 statement;
 statement;
 while (expression) {
 while(expression)
 statement;
 statement;
 }
}

statementSequence: ‘’ // empty sequence (null)
 | statement ‘;’ statementSequence

expression: ... // Definition of ”expression”

... // More definitions follow

FIGURE 10.3: A subset of the C language grammar (left)
and a sample code segment accepted by this grammar (right).

In this chapter we specify grammars using the following notation: terminal elements appear in bold
text enclosed within single quotes, and non-terminal elements in regular font. When there is more
than one way to parse a non-terminal, the “|” notation is used to list the alternative possibilities.
Thus, the grammar in figure 10.3 specifies that a statement can be either a whileStatement, or an
ifStatement, and so on. Typically, grammar rules are highly recursive, and the grammar in figure 10.3
is no exception. For example, statementSequence is either null, or a single statement followed by a
semicolon and a statementSequence. This recursive definition can accommodate a sequence of 0, 1,
2, or any other positive number of semicolon-separated statements. As an exercise, the reader may
use the grammar in figure 10.3 to ascertain that the text appearing in the right side of the figure

Chapter 10: Compiler I: Syntax Analysis 169

constitutes a valid C code. You may start by trying to match the entire text with statement, and work
your way from there.

Parsing

The act of checking whether a grammar “accepts” an input text as valid is called parsing. As we
noted earlier, parsing a given text means determining the exact correspondence between the text and
the rules of a given grammar. Since the grammar rules are hierarchical, the output generated by the
parser can be described in a tree-oriented data structure called parse tree or derivation tree. Figure
10.4 gives a typical example.

while . . .()count <= 100 { count ++

statement

whileStatement

expression

statementSequence

statement

;

statement statementSequence

C code

while (count<=100) {
 count++;
 // ...

Tokenized
(parser's input):

while
(
count
<=
100
)
{
count
++
;
...

statement: whileStatement | ifStatement

 | ... | '{' statementSequence '}'

whileStatement: 'while' '(' expression ')'
 statement
ifStatement: ... // Definition of "if"

statementSequence: '' // Null

 | statement ';' statementSequence

expression: ... // Definition of "expression"

C language grammar (partial)

FIGURE 10.4: Parse tree of the program from figure 10.2 according to the
grammar in figure 10.3. Solid triangles represent lower-level parse trees.

Note that as a side effect of the parsing process, the entire syntactic structure of the input text is
uncovered. Some compilers represent this tree by an explicit data structure that is further used for
code generation and error reporting. Other compilers (including the one that we will build) represent
the program’s structure implicitly, generating code and reporting errors on the fly. Such compilers
don’t have to hold the entire program structure in memory, but only the sub-tree associated with the
presently parsed element. More about this, later.

Recursive descent parsing: There are several algorithms for constructing parse trees. The top-down
approach, also called recursive descent parsing, attempts to parse the tokens stream recursively,
using the nested structure prescribed by the language grammar. Let us consider how a parser

Chapter 10: Compiler I: Syntax Analysis 170

program that implements this strategy can be written. For every rule in the grammar describing a
non-terminal, we can equip the parser program with a recursive routine designed to parse that non-
terminal. If the non-terminal consists of terminal atoms only, the routine can simply process them.
Otherwise, for every non-terminal building block in the rule’s right hand side, the routine can
recursively call the routine designed to parse this non-terminal. The process will continue
recursively, until all the terminal atoms have been reached and processed.

To illustrate, suppose we have to write a recursive descent parser that implements the grammar in
figure 10.3. Since the grammar has five derivation rules, the parser implementation can consist of
five major routines: parseStatement(), parseWhileStatement(), parseIfStatement(),
parseStatementSequence(), and parseExpression(). The parsing logic of these routines should
follow the syntactic patterns appearing in the right hand sides of the corresponding grammar rules.
Thus parseStatement() should probably start its processing by determining what is the first token
in the input. Having established the token’s identity, the routine could determine which statement we
are in, and then call the parsing routine associated with this statement type.

For example, if the input stream were Program 1, the routine should establish that the first token is
while, and then call the parseWhileStatement() routine. According to the corresponding grammar
rule, this routine should next attempt to read the terminals “while” and “(“, and then call
parseExpression() to parse the non-terminal expression. After parseExpression() would return
(having parsed the “count<=100” sequence in our example), the grammar dictates that
parseWhileStatement() should attempt to read the terminal “)” and then recursively call
parseStatement(). This call would continue recursively, until at some point only terminal atoms
are read. Clearly, the same logic can also be used for detecting syntax errors in the source program.
The better the compiler, the better will be its error diagnostics.

LL(0) grammars: Recursive parsing algorithms are simple and elegant. The only possible
complication arises when there are several alternatives for parsing non-terminals. For example, when
parseStatement() attempts to parse a statement, it does not know in advance whether this
statement is a while-statement, an if-statement, or a bunch of statements enclosed within curly-
brackets. The span of possibilities is determined by the grammar, and in some cases it is easy to tell
which alternative we are in. For example, consider the grammar in figure 10.3. If the first token is
“while”, it is clear that we are faced with a while statement, since this is the only alternative in the
grammar that starts with a “while” token. This observation can be generalized as follows: whenever
a non-terminal has several alternative derivation rules, the first token suffices to resolve without
ambiguity which rule to use. Grammars that have this lingual property are called LL(0). These
grammars can be handled simply and neatly by recursive descent algorithms.

When the first token does not suffice to resolve the element’s type, it is possible that a “look ahead”
to the next token will settle the dilemma. Such parsing can obviously be done, but as we need to look
ahead at more and more tokens down the stream, things start getting complicated. The Jack language
grammar, which we now turn to present, is almost LL(0), and thus it can be handled rather simply by
a recursive descent parser. The only exception is the parsing of expressions, where just a little look
ahead is necessary.

Chapter 10: Compiler I: Syntax Analysis 171

10.2 Specification

This section has two distinct parts. First, we specify the Jack language’s grammar. Next, we specify
a syntax analyzer designed to parse programs according to this grammar.

10.2.1 The Jack Language Grammar

The functional specification of the Jack language given in Chapter 9 was aimed at Jack
programmers. We now turn to give a formal specification of the Jack language, aimed at Jack
compiler developers. Our grammar specification is based on the following conventions:

'xxx' : Quoted boldface is used for tokens that appear verbatim (“terminals”);

xxx : Regular typeface is used for names of language constructs (“non-terminals”);

() : Parentheses are used for grouping of language constructs;

x | y : Indicates that either x or y can appear;

x? : Indicates that x appears 0 or 1 times;

x* : Indicates that x appears 0 or more times.

The Jack language syntax is given in the grammar in figure 10.5, using the above conventions.

Chapter 10: Compiler I: Syntax Analysis 172

Lexical elements: The Jack language includes five types of terminal elements (tokens):

keyword: 'class' | 'constructor' | 'function' | 'method' | 'field' | 'static' |
'var' | 'int' | 'char' | 'boolean' | 'void' | 'true' | 'false' | 'null' | 'this' |
'let' | 'do' | 'if' | 'else' | 'while' | 'return'

symbol: '{' | '}' | '(' | ')' | '[' | ']' | '. ' | ', ' | '; ' | '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' | '~'
integerConstant: A decimal number in the range 0 .. 32767.

StringConstant '"' A sequence of Unicode characters not including double quote or newline '"'
identifier: A sequence of letters, digits, and underscore ('_') not starting with a digit.

Program structure: A Jack program is a collection of classes, each appearing in a separate file.
The compilation unit is a class. A class is a sequence of tokens structured
according to the following context free syntax:

class: 'class' className '{' classVarDec* subroutineDec* '}'
classVarDec: ('static' | 'field') type varName (',' varName)* ';'

type: 'int' | 'char' | 'boolean' | className
subroutineDec: ('constructor' | 'function' | 'method') ('void' | type) subroutineName

 '(' parameterList ')' subroutineBody
parameterList: ((type varName) (',' type varName)*)?

subroutineBody: '{' varDec* statements '}'
varDec: 'var' type varName (',' varName)* ';'

className: identifier
subroutineName: identifier

varName: identifier

Statements:
statements: statement*
statement: letStatement | ifStatement | whileStatement | doStatement | returnStatement

letStatement: 'let' varName ('[' expression ']')? '=' expression ';'
ifStatement: 'if' '(' expression ')' '{' statements '}' ('else' '{' statements '}')?

whileStatement: 'while' '(' expression ')' '{' statements '}'
doStatement: 'do' subroutineCall ';'

ReturnStatement 'return' expression? ';'

Expressions:
expression: term (op term)*

term: integerConstant | stringConstant | keywordConstant | varName |
varName '[' expression ']' | subroutineCall | '(' expression ')' | unaryOp term

subroutineCall: subroutineName '(' expressionList ')' | (className | varName) '.' subroutineName
 '(' expressionList ')'

expressionList: (expression (',' expression)*)?
op: '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '='

unaryOp: '-' | '~'
KeywordConstant: 'true' | 'false' | 'null' | 'this'

FIGURE 10.5: Complete grammar of the Jack language

Chapter 10: Compiler I: Syntax Analysis 173

10.2.2 A Syntax Analyzer for the Jack Language

The main purpose of the syntax analyzer is to read a Jack program and “understand” its syntactic
structure according to the Jack grammar. By “understanding” we mean that the syntax analyzer must
know, at each point in the parsing process, the structural identity of the program element that it is
currently reading, i.e. whether it is an expression, a statement, a variable name, and so on. The
syntax analyzer must possess this syntactic knowledge in a complete recursive sense. Without it, it
will be impossible to move on to code generation -- the ultimate goal of the overall compiler.

The fact that the syntax analyzer “understands” the programmatic structure of the input can be
demonstrated by having it print the processed text in some well-structured and easy to read format.
One can think of several ways to cook up such a demonstration. In this book, we decided to have the
syntax analyzer output an XML file whose marked-up format reflects the syntactic structure of the
underlying program. By viewing this XML output file -- a task that can be conveniently done with
any web browser -- one should be able to tell right away if the syntax analyzer is doing the job or
not.

The Syntax Analyzer’s Input

The Jack syntax analyzer accepts a single command line parameter, as follows:

prompt> JackAnalyzer source

Where source is either a file name of the form Xxx.jack (the extension is mandatory) or a directory
name containing one or more .jack files (in which case there is no extension). The syntax analyzer
compiles each Xxx.jack file into a file named Xxx.xml, created in the same directory in which the
source file is located. If source is a directory name, each .jack file located in it is compiled, creating
a corresponding .xml file in the same directory.

Each Xxx.jack file is a stream of characters. This stream should be tokenized into a stream of tokens
according to the rules specified by the lexical elements of the Jack language (see top of figure 10.5).
The tokens may be separated by an arbitrary number of space characters, newline characters and
comments, which are ignored. Comments are of the standard formats /* comment until closing
*/ , /** API comment */, and // comment to end of line.

Chapter 10: Compiler I: Syntax Analysis 174

The Syntax Analyzer’s Output

Recall that the development of the Jack compiler is split into two stages (see figure 10.1), starting
with the syntax analyzer. In this chapter, we wish the syntax analyzer to emit an XML description of
the input program, as illustrated in figure 10.6. In order to do so, the syntax analyzer has to recognize
two major types of language constructs: terminal elements, and non-terminal elements. These
constructs are handled as follows.

Non-terminals: Whenever a non-terminal language element of type xxx is encountered, the syntax
analyzer should generate the marked-up output:

<xxx>
 Recursive code for the body of the xxx element.
</xxx>

Where xxx is one of the following (and only the following) non-terminals of the Jack grammar:

• class, classVarDec, subroutineDec, parameterList, subroutineBody, varDec;
• statements, whileSatement, ifStatement, returnStatement,

letStatement, doStatement;
• expression, term, expressionList.

Terminals: Whenever a terminal language element of type xxx is encountered, the syntax analyzer
should generate the marked-up output:

 <xxx> terminal </xxx>

Where xxx is one of the five token types recognized by the Jack language (as specified in the Jack
grammar’s “lexical elements” section): keyword, symbol, integerConstant, stringConstant, or
identifier.

Chapter 10: Compiler I: Syntax Analysis 175

Analyzer’s input (Jack code) Analyzer’s output (XML code)

Class Bar {
 method Fraction foo(int y) {
 var int temp; // a variable
 let temp = (xxx+12)*-63;
 ...
 ...

<class>
 <keyword> class </keyword>
 <identifier> Bar </identifier>
 <symbol> { </symbol>
 <subroutineDec>
 <keyword> method </keyword>

 <identifier> Fraction </identifier>
 <identifier> foo </identifier>
 <symbol> (</symbol>
 <parameterList>
 <keyword> int </keyword>
 <identifier> y </identifier>
 </parameterList>
 <symbol>) </symbol>
 <subroutineBody>
 <symbol> { </symbol>
 <varDec>
 <keyword> var </keyword>
 <keyword> int </keyword>
 <identifier> temp </identifier>
 <symbol> ; </symbol>
 </varDec>
 <statements>
 <letStatement>
 <keyword> let </keyword>
 <identifier> temp </identifier>
 <symbol> = </symbol>
 <expression>
 <term>
 <symbol> (</symbol>
 <expression>
 <term>
 <identifier> xxx </identifier>
 </term>
 <symbol> + </symbol>
 <term>
 <integerConstant> 12
 </integerConstant>
 </term>
 </expression>
 <symbol>) </symbol>
 </term>
 <symbol> * </symbol>
 <term>
 <symbol> - </symbol>
 <term>
 <integerConstant> 63
 </integerConstant>
 </term>
 </term>
 </expression>
 <symbol> ; </symbol>
 </letStatement>
 ...

Syntax Analyzer

FIGURE 10.6: Jack Analyzer in action

Chapter 10: Compiler I: Syntax Analysis 176

Figure 10.6 should evoke some sense of déjà vu. Earlier in the chapter we noted that the structure of
a program can be analyzed into a parse tree. And indeed, XML output is simply a textual description
of a tree. In particular, note that in a parse tree, the non-terminal nodes form a “super structure” that
describes how the tree’s terminal nodes (the tokens) are grouped into language constructs. This
pattern is mirrored in the XML output, where non-terminal XML elements describe how terminal
XML items are arranged. In a similar fashion, the tokens generated by the tokenizer form the lowest
level of the XML output, just as they form the terminal leaves of the program’s parse tree.

Code generation: We have just finished specifying the analyzer’s XML output. In the next chapter
we will replace the software that generates this output with software that generates executable VM
code, leading to a full-scale Jack compiler.

10.3 Implementation

Section 2 gave all the information necessary to build a syntax analyzer for the Jack language, without
any implementation details. This section describes a proposed software architecture for the syntax
analyzer. We suggest arranging the implementation in three modules:

� JackAnalyzer: Top level driver that sets up and invokes the other modules;

� JackTokenizer: Tokenizer;

� CompilationEngine: Recursive top-down parser.

These modules are designed to handle the language’s syntax. In the next chapter we will extend this
architecture with two additional modules that handle the language’s semantics: a symbol table and a
VM-code writer. This will complete the construction of a full-scale compiler for the Jack language.
Since the module that drives the parsing process in this project will also drive the overall compilation
in the next project, we call it CompilationEngine.

The JackAnalyzer Module

The analyzer program operates on a given source, where source is either a file name of the form
Xxx.jack or a directory name containing one or more such files. For each source Xxx.jack file, the
analyzer goes through the following logic:

1. Create a JackTokenizer from the Xxx.jack input file;

2. Create an output file called Xxx.xml and prepare it for writing;

3. Use the CompilationEngine to compile the input JackTokenizer into the output
file.

Chapter 10: Compiler I: Syntax Analysis 177

The JackTokenizer Module

JackTokenizer: Removes all comments and white space from the input stream and breaks it into Jack-
language tokens, as specified by the Jack grammar.

Routine Arguments Returns Function

Constructor

input file /
stream

-- Opens the input file/stream and gets ready
to tokenize it.

hasMoreTokens -- Boolean Do we have more tokens in the input?

advance -- -- Gets the next token from the input and
makes it the current token. This method
should only be called if hasMoreTokens()
is true. Initially there is no current token.

tokenType -- KEYWORD, SYMBOL,
IDENTIFIER,
INT_CONST,
STRING_CONST

Returns the type of the current token.

keyWord -- CLASS, METHOD,
FUNCTION,
CONSTRUCTOR, INT,
BOOLEAN, CHAR, VOID,
VAR, STATIC, FIELD,
LET, DO, IF, ELSE,
WHILE, RETURN, TRUE,
FALSE, NULL, THIS

Returns the keyword which is the current
token. Should be called only when
tokenType() is KEYWORD.

symbol -- Char Returns the character which is the current
token. Should be called only when
tokenType() is SYMBOL.

identifier -- String Returns the identifier which is the current
token. Should be called only when
tokenType() is IDENTIFIER

intVal Int Returns the integer value of the current
token. Should be called only when
tokenType() is INT_CONST

stringVal String Returns the string value of the current
token, without the double quotes. Should
be called only when tokenType() is
STRING_CONST.

Chapter 10: Compiler I: Syntax Analysis 178

The CompilationEngine Module

CompilationEngine: Effects the actual compilation output. Gets its input from a JackTokenizer and
emits its parsed structure into an output file/stream. The output is generated by a series of compilexxx()
routines, one for every syntactic element xxx of the Jack grammar. The contract between these routines is
that each compilexxx() routine should read the syntactic construct xxx from the input, advance() the
tokenizer exactly beyond xxx, and output the parsing of xxx. Thus, compilexxx()may only be called if
indeed xxx is the next syntactic element of the input.

In the first version of the compiler, described in Chapter 10, this module emits a structured printout of the
code, wrapped in XML tags. In the final version of the compiler, described in Chapter 11, this module
generates executable VM code. In both cases, the parsing logic and module API are exactly the same.

Routine Arguments Returns Function

Constructor

Input
stream/file

Output
stream/file

-- Creates a new compilation engine with the
given input and output. The next routine
called must be compileClass().

CompileClass -- -- Compiles a complete class.

CompileClassVarDec -- -- Compiles a static declaration or a field
declaration.

CompileSubroutine

-- -- Compiles a complete method, function, or

constructor.

compileParameterList -- -- Compiles a (possibly empty) parameter list,
not including the enclosing “()”.

compileVarDec -- -- Compiles a var declaration.

compileStatements -- -- Compiles a sequence of statements, not
including the enclosing “{}”.

compileDo -- -- Compiles a do statement.

compileLet -- -- Compiles a let statement.

compileWhile -- -- Compiles a while statement.

compileReturn -- -- Compiles a return statement.

compileIf -- -- Compiles an if statement,
possibly with a trailing else clause.

(the module API continues on the next page)

Chapter 10: Compiler I: Syntax Analysis 179

CompileExpression -- -- Compiles an expression.

CompileTerm -- -- Compiles a term. This routine is faced with a
slight difficulty when trying to decide
between some of the alternative parsing rules.
Specifically, if the current token is an
identifier, the routine must distinguish
between a variable, an array entry, and a
subroutine call. A single look-ahead token,
which may be one of “[“, “(“, or “.”
suffices to distinguish between the three
possibilities. Any other token is not part of
this term and should not be advanced over.

CompileExpressionList -- -- Compiles a (possibly empty) comma-
separated list of expressions.

10.4 Perspective

Although it is convenient to describe the structure of computer programs using parse trees and XML
files, it’s important to understand that compilers don’t necessarily have to maintain such data
structures explicitly. For example, the parsing algorithm described in this chapter runs “on-line” – it
parses the input as it reads it, and does not keep the entire input program in memory. There are
essentially two types of strategies for doing such parsing. The simpler strategy works top-down, and
this is the one presented in this chapter. The more advanced algorithms, which work bottom-up, were
not described here since they require a non-trivial elaboration of theory.

Indeed, in this chapter we have side-stepped almost all the formal language theory studied in typical
compilation courses. We were able to do so by choosing a very simple syntax for the Jack language -
- a syntax that can be easily compiled using recursive descent techniques. For example, the Jack
grammar does not mandate the usual operator precedence in expressions evaluation (multiplication
before addition, and so on). This enabled us to avoid parsing algorithms which are more powerful yet
much more technical than the elegant top-down parsing techniques presented in the chapter.

Another topic which was hardly mentioned in the chapter is how the syntax of languages is specified
in general. There is a rich theory called formal languages that discusses properties of classes of
languages, as well as meta-languages and formalisms for specifying them. This is also the point
where computer science meets the study of human languages, leading to the vibrant area of research
known as computational linguistics.

Finally, it is worth mentioning that syntax analyzers are not stand alone programs, and are rarely
written from scratch. Instead, programmers usually build tokenizers and parsers using a variety of
“compiler generator” tools like LEX (for lexical analysis) and YACC (for Yet Another Compiler
Compiler). These utilities receive as input a context free grammar, and produce as output syntax
analysis code capable of tokenizing and parsing programs written in that grammar. The generated
code can then be customized to fit the specific compilation needs of the application at hand.

Chapter 10: Compiler I: Syntax Analysis 180

Following the “show me” spirit of this book, we have chosen not to use such black boxes in the
implementation of our compiler, but rather build everything from the ground up.

10.5 Project

The compiler construction spans two projects: 10 and 11. This section describes how to build the
syntax analyzer described in this chapter. In the next chapter we will extend this analyzer into a full-
scale Jack compiler.

Objective: Build a syntax analyzer that parses Jack programs according to the Jack grammar. The
analyzer’s output should be written in XML, as defined in the Specification section.

Resources: The main tool in this project is the programming language in which you will implement
the syntax analyzer. You will also need the supplied TextComparer utility, which allows comparing
the output files generated by your analyzer to the compare files supplied by us. You may also want to
inspect the generated and supplied output files using an XML viewer (any standard web browser
should do the job).

Contract: Write the syntax analyzer program in two stages: tokenizing and parsing. Use it to parse
all the .jack files mentioned below. For each source .jack file, your analyzer should generate an
.xml output file. The generated files should be identical to the .xml compare-files supplied by us.

Test Programs

The syntax analyzer’s job is to parse programs written in the Jack language. Thus, a reasonable way
to test your analyzer it is to have it parse several representative Jack programs. We supply two such
test programs, called Square Dance and Array Test. The former includes all the features of the Jack
language except for array processing, which appears in the latter. We also provide a simpler version
of the of the Square Dance program, as explained below.

For each one of the three programs, we supply all the Jack source files comprising the program. For
each such Xxx.jack file, we supply two compare files named XxxT.xml and Xxx.xml. These files
contain, respectively, the output that should be produced by a tokenizer and by a parser applied to
Xxx.jack.

� Square Dance (projects/10/Square): A trivial interactive “game” that enables moving a black
square around the screen using the keyboard’s four arrow keys.

� Expressionless Square Dance (projects/10/ExpressionlessSquare): An identical copy of
Square Dance, except that each expression in the original program is replaced with a single
identifier (some variable name in scope). For example, the Square class has a method that
increases the size of the graphical square object by 2 pixels, as long as the new size does not
cause the square image to spill over the screen’s boundaries. The code of this method is as
follows:

Chapter 10: Compiler I: Syntax Analysis 181

Square Class Code ExpressionlessSquare Class Code

method void incSize() {
 if (((y + size) < 254) & ((x + size) < 510) {
 do erase();
 let size = size + 2;
 do draw();
 }
 return;
}

method void incSize() {
 if (x) {
 do erase();
 let size=size;
 do draw();
 }
 return;
}

Note that the replacement of expressions with variables has resulted in a nonsensical program
that cannot be compiled by the supplied Jack Compiler. Still, it follows all the Jack grammar
rules. The expressionless files have the same names as those of the original files, but they are
located in a separate directory.

� Array test (projects/10/Square): A single-class Jack program that computes the average of a
user-supplied sequence of integers using array notation and array manipulation.

Experimenting with the test programs: If you want, you can compile the Square Dance and Test
Array programs using the supplied Jack compiler, then use the supplied VM Emulator to run the
compiled code. These activities are completely irrelevant to this project, but they serve to highlight
the fact that the test programs are not just plain text (although this is perhaps the best way to think
about them in the context of this project).

Stage 1: Tokenizer

First, implement the Jack tokenizer (JackTokenizer module specified in Section 10.3). When
applied to a text file containing Jack code, the tokenizer should produce a list of tokens, each printed
in a separate line along with its classification: symbol, keyword, identifier, integer constant, or string
constant. The classification should be recorded using XML tags. Here is an example:

Source Code Tokenizer Output
if (x < 153) {let city = ”Paris”;}

<tokens>
 <keyword> if </keyword>
 <symbol> (</symbol>
 <identifier> x </identifier>
 <symbol> < </symbol>
 <integerConstant> 153 </integerConstant>
 <symbol>) </symbol>
 <symbol> { </symbol>
 <keyword> let </keyword>
 <identifier> city </identifier>
 <symbol> = </symbol>
 <stringConstant> Paris </stringConstant>
 <symbol> ; </symbol>
 <symbol> } </symbol>
</tokens>

Note that in the case of string constants, the tokenizer throws away the double quote characters.
That’s OK.

Chapter 10: Compiler I: Syntax Analysis 182

The tokenizer’s output has two “features” dictated by XML conventions. First, an XML file must be
enclosed within some begin and end tags, and that’s why the <tokens> and </tokens> tags were
added to the output. Second, four of the symbols used in the Jack language (<, >, ", &) are also used
for XML markup, and thus they cannot appear as data in XML files. To solve the problem, we
require the tokenizer to output these tokens as <, >, ", and &, respectively. For
example, in order for the text “<symbol> < </symbol>” to be displayed properly in a web browser,
the source XML should be written as “<symbol> < </symbol>”.

Testing Your Tokenizer:

� Test your tokenizer on the Square Dance and Test Array programs. There is no need to test it on
the expressionless version of the former.

� For each source file Xxx.jack, have your tokenizer give the output file the name XxxT.xml.
Apply your tokenizer to every class file in the test programs, then use the supplied
TextComparer utility to compare the generated output to the supplied .xml compare files.

� Since the output files generated by your tokenizer will have the same names and extensions as
those of the supplied compare files, we suggest putting them in separate directories.

Stage 2: Parser

Next, implement the Compilation Engine (CompilationEngine module specified in Section 10.3).
Write each method of the engine, as specified in the API, and make sure that it emits the correct
XML output. We recommend to start by writing a compilation engine that handles everything except
expressions, and test it on the expressionless Square Dance program only. Next, extend the parser to
handle expressions as well, and proceed to test it on the Square Dance and Array Test programs.

Testing Your Parser:

� Apply your JackAnalyzer to the supplied test programs, then use the supplied TextComparer
utility to compare the generated output to the supplied .xml compare files.

� Since the output files generated by your analyzer will have the same names and extensions as
those of the supplied compare files, we suggest putting them in separate directories.

� Note that the indentation of the XML output is only for readability. Web browsers and the
supplied TextComparer utility ignore white space.

