Musingson Teaching Basic
Programming Concepts

Warren Toomey

Thisisashort look at some of the drawbacks of
teaching Java as a 1% programing language, some
alternatives, and the obstacles in the way of
teaching basic programming skills.

Questions and short discussions along the way are
most welcome.

I Why Do We Teach Java?

language)

* Good collection of control structures: if, for,
while, methods etc.

* (Good data structures: objects, arrays, object
references

* Avallable on nearly all common platforms

* A popular language, reasonably standard, not too
proprietary

I * Reasonably abstract (1.e. better than C, assembly

What's Bad About Java asa 1¢
Programming L anguage?

* So much structureto learn:

public class AccountList
public static void main(String [] args)
Scanner scan = new Scanner (System.in);

* Only basic interactivity:
scan.nextint();
System.out.printin();

* Objects and types get in the road of doing things

* Graphics are not easy to do

* Edit, compile, run cycle: results are not seen
Immediately by the student

Can ThisBe Overcome?

* Can we hide the language baggage, while
providing good control and data structures?

* Can we provide more interactivity, so asto
engage the students and make the learning
experience more enjoyable?

* Should we start with a simpler language before
progressing to Java or an equivalent?

* Let’slook at some other languages/tools

I Gr eenfoot
* Embeds the Javalanguage in a graphical
I environment
* |nstances of actor classes can be dropped into the
world

* Each instance can be controlled manually, or the
world “run” so that all actors show their
behaviour

* Thereis access to the Java code for each actor
class. to view, to modify, to create new actor
classes

* WWw.greenfoot.org

Greenfoot

_6 e 0 A _Cree_n_fom: 1_._-._rom|:_:-_a_lt_s

@ Project Information
WombatWorld

World classes

World

’ %l WombatWorld
Actor classes
’ = Actor

-~ Act P Run Speed: - e

I Compile All

Greenfoot

ﬁ : inherited from Dbjecr' o

inherited from ObjectTransporter W
inherited from Actor 3

void act()

boolean canMove()
void eatLeaf()
boolean foundLeaf()

void move()

void setDirection(int)
void turnLeft))

Inspect

Femove
| - | | o

I Alice
* Like Greenfoot, Alice embeds a Java-like
I language In a graphical environment
* |nstances of actor classes can be dropped into the
world

* Each instance can be controlled manually, or the
world “run” so that all actors show their
behaviour

* Alice, however, seemsto hide the underlying
language behind a“graphical” language

* www.alice.org

AliceVideo

e Start from position 1:52

WE) Py

& v

«7] Lindn

i

m Gy

4 e

@ e

Q R g
D vnnncone
) oocome

i takw

@ hanmsky

I| .‘-III
LRk 0 L]
b
co b
oSk
cihbaim
(R] SR [

o tbuaim

a - nS At

LEL

[EEL LI

et oy gl Lok ol
st oy

iy 1o

LRI]

B e ol v (o

iy sinnn

2]

@ World.my first animeation |

Wﬂ'lti,irl;" TIrSt ArITmAateen “uo odd G reers

Events |create new mamm

VWiten thi swoml mnarda o

Dy Bt haiat

o eate bl i frewE Fodwemial 1 Py L f
i e i |l|l||rl. fuwm o waad L o [N} i 2.
—=| W it i I i 10 il s

| ERh Cisigent Byimy

W Rl AT T T TR || AR] TV,

W Waan Plivy wotiod] WWO! R sEsasn (000 X 39 [L1 .

WA Ly

I Scratch

where actors can perform

* Thistime, the language is represented by
graphical elements

* There are no data structures apart from simple
variables

* However, there is alarge amount of multimedia
support

e scratch.mit.edu

I * Likethe previoustwo, Scratch provides a stage

Scratch Video

e Start from position 1:16

o]
[Vo T Dpem J{ 5ewe I8 2o e] sivrm 11 Cotrme JHL tinte T et okt § cassywalking =

= L IERYEER.

frause W 122
rrues 2R

My Comments on Greenfoot,
Alice and Scratch

* Greenfoot: still the Java language baggage, and
the framerate Is Slow

* Alice seems to be somewhat maths oriented:
(X,y) positions, movement etc.

e Scratch: no textual language, students will have
to transition to atextual language

* Also no decent data structures, but at |east the
graphics & interactivity are good

I * In 072, | taught an “Intro to Game Logic” course
I using Game Maker (GM)
* GM provides objects, instances, and an event
model
* Programming Is done either by drag 'n drop, or
using a script-like textual language
* Variables are typeless, like Perl: they hold ints,
floats, strings, booleans, instance-1ds
* Global vars, instance vars, local vars
* 1D arrays exist

Game M aker

Game M aker Control Structures

* Vay C and Javalike.

* Expressions, assignment, |F, FOR, WHILE

* Do .. Until

* Repeat(): repeat for agiven # of times

* With(): apply the following code to a specific
Instance, or to all instances of an object

* User-defined functions with arguments, local
variables and areturn value if required

* GM checks# arguments at run-time

I Some Game M aker Examples

— In both drag 'n drop and textua form
- The latter using student-written functions

* Some examples involving loops and the with()
construct to manipulate instances

* An example of a 3D game
- Just to show you the power of the system

I * Assignment 2: Frogger

I Strengths of Game M aker

* Niceto |lose the language baggage
I * Typelessvariables: easier to start with

e Students can start with drag 'n drop, and then
transition to a textual language

* The overall syntax, and the control structures, are
very closeto C and Java

- makes atransition to areal language easier

e Students enjoyed making games, it helped to
engage them

* The built-in functions are very powerful, and
make game programming eas &

I W eaknesses of Game M aker

* Some students found the transition from drag 'n
drop to textual language difficult
* You cannot see “all” the code at once: It is Spread
around many objects, events, scripts
* The debugger has no breakpoints, no single-step
* Most difficult concepts for the students:
— Loops
- Functions; how to use them and when, how
they work, use of local variables

I * Only available on Windows (boo, hiss!)

I What | Would Liketo See

* A 26-week 1% programming subject
I * Students would do 6 weeks with a scripting
language like Game M aker
- easler learning curve than Java, but still gives
basic data and control structures
* Then transition to Java for more advanced stuff:
recursion, inheritance, data structures etc.
* |ntroduce a Java-based 3D game engine mid-way
through to keep their engagement levels up

Discussion Time

