
Musings on Teaching Basic
Programming Concepts

Warren Toomey

This is a short look at some of the drawbacks of
teaching Java as a 1st programing language, some

alternatives, and the obstacles in the way of
teaching basic programming skills.

Questions and short discussions along the way are
most welcome.

Why Do We Teach Java?

● Reasonably abstract (i.e. better than C, assembly
language)

● Good collection of control structures: if, for,
while, methods etc.

● Good data structures: objects, arrays, object
references

● Available on nearly all common platforms
● A popular language, reasonably standard, not too

proprietary

What's Bad About Java as a 1st
Programming Language?

● So much structure to learn:
 public class AccountList
 public static void main(String [] args)
 Scanner scan = new Scanner(System.in);
● Only basic interactivity:
 scan.nextInt();
 System.out.println();
● Objects and types get in the road of doing things
● Graphics are not easy to do
● Edit, compile, run cycle: results are not seen

immediately by the student

Can This Be Overcome?

● Can we hide the language baggage, while
providing good control and data structures?

● Can we provide more interactivity, so as to
engage the students and make the learning
experience more enjoyable?

● Should we start with a simpler language before
progressing to Java or an equivalent?

● Let’s look at some other languages/tools

Greenfoot

● Embeds the Java language in a graphical
environment

● Instances of actor classes can be dropped into the
world

● Each instance can be controlled manually, or the
world “run” so that all actors show their
behaviour

● There is access to the Java code for each actor
class: to view, to modify, to create new actor
classes

● www.greenfoot.org

Greenfoot

Greenfoot

Alice

● Like Greenfoot, Alice embeds a Java-like
language in a graphical environment

● Instances of actor classes can be dropped into the
world

● Each instance can be controlled manually, or the
world “run” so that all actors show their
behaviour

● Alice, however, seems to hide the underlying
language behind a “graphical” language

● www.alice.org

Alice Video

● Start from position 1:52

Scratch

● Like the previous two, Scratch provides a stage
where actors can perform

● This time, the language is represented by
graphical elements

● There are no data structures apart from simple
variables

● However, there is a large amount of multimedia
support

● scratch.mit.edu

Scratch Video

● Start from position 1:16

My Comments on Greenfoot,
Alice and Scratch

● Greenfoot: still the Java language baggage, and
the framerate is slow

● Alice: seems to be somewhat maths oriented:
(x,y) positions, movement etc.

● Scratch: no textual language, students will have
to transition to a textual language

● Also no decent data structures, but at least the
graphics & interactivity are good

Game Maker

● In 072, I taught an “Intro to Game Logic” course
using Game Maker (GM)

● GM provides objects, instances, and an event
model

● Programming is done either by drag 'n drop, or
using a script-like textual language

● Variables are typeless, like Perl: they hold ints,
floats, strings, booleans, instance-ids

● Global vars, instance vars, local vars
● 1D arrays exist

Game Maker Control Structures

● Very C and Java like.
● Expressions, assignment, IF, FOR, WHILE
● Do .. Until
● Repeat(): repeat for a given # of times
● With(): apply the following code to a specific

instance, or to all instances of an object
● User-defined functions with arguments, local

variables and a return value if required
● GM checks # arguments at run-time

Some Game Maker Examples

● Assignment 2: Frogger
– In both drag 'n drop and textual form
– The latter using student-written functions

● Some examples involving loops and the with()
construct to manipulate instances

● An example of a 3D game
– Just to show you the power of the system

Strengths of Game Maker

● Nice to lose the language baggage
● Typeless variables: easier to start with
● Students can start with drag 'n drop, and then

transition to a textual language
● The overall syntax, and the control structures, are

very close to C and Java
– makes a transition to a real language easier

● Students enjoyed making games, it helped to
engage them

● The built-in functions are very powerful, and
make game programming easier

Weaknesses of Game Maker

● Only available on Windows (boo, hiss!)
● Some students found the transition from drag 'n

drop to textual language difficult
● You cannot see “all” the code at once: it is spread

around many objects, events, scripts
● The debugger has no breakpoints, no single-step
● Most difficult concepts for the students:

– Loops
– Functions: how to use them and when, how

they work, use of local variables

What I Would Like to See

● A 26-week 1st programming subject
● Students would do 6 weeks with a scripting

language like Game Maker
– easier learning curve than Java, but still gives

basic data and control structures
● Then transition to Java for more advanced stuff:

recursion, inheritance, data structures etc.
● Introduce a Java-based 3D game engine mid-way

through to keep their engagement levels up

Discussion Time

