Particle number operator

From Wikipedia, the free encyclopedia

In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles.

|\Psi\rangle_\nu
|\Psi\rangle_\nu=|\phi_1,\phi_2,\cdots,\phi_n\rangle_\nu
a^{\dagger}(\phi_i)
\hat{N_i}|\Psi\rangle_\nu=N_i|\Psi\rangle_\nu
|\phi_i\rangle
\begin{matrix}
a(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_i,\phi_{i+1},\cdots,\phi_n\rangle_\nu
&=& \sqrt{N_i}  |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\
a^{\dagger}(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\phi_{i+1},\cdots,\phi_n\rangle_\nu  &=& \sqrt{N_i+1}  |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\phi_{i+1},\cdots,\phi_n\rangle_\nu 
\end{matrix}

then

\begin{matrix}
\hat{N_i}|\Psi\rangle_\nu = a^{\dagger}(\phi_i)a(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_i,\phi_{i+1},\cdots,\phi_n\rangle_\nu\\
&=& \sqrt{N_i} a^{\dagger}(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\ &=& N_i |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i},\phi_{i+1},\cdots,\phi_n\rangle_\nu = N_i|\Psi\rangle_\nu\\
\end{matrix}