Pollution v • d • e |
Air pollution |
Acid rain • Air Quality Index • Atmospheric dispersion modeling • Chlorofluorocarbon • Global dimming • Global distillation• Global warming • Indoor air quality • Ozone depletion • Particulate • Smog |
Water pollution |
Eutrophication • Hypoxia • Marine pollution • Marine debris • Ocean acidification • Oil spill • Ship pollution • Surface runoff • Thermal pollution • Wastewater • Waterborne diseases • Water quality • Water stagnation |
Soil contamination |
Bioremediation • Herbicide • Pesticide • Soil Guideline Values (SGVs) |
Radioactive contamination |
Actinides in the environment • Environmental radioactivity • Fission product • Nuclear fallout • Plutonium in the environment • Radiation poisoning • Radium in the environment • Uranium in the environment |
Other types of pollution |
Invasive species • Light pollution • Noise pollution • Radio spectrum pollution • Visual pollution |
Inter-government treaties |
Montreal Protocol • Kyoto Protocol • CLRTAP • OSPAR |
Major organizations |
DEFRA • EPA • Global Atmosphere Watch • EEA • Greenpeace • American Lung Association |
Related topics |
Environmental Science • Natural environment |
Air pollution is the human introduction into the atmosphere of chemicals, particulate matter, or biological materials that cause harm or discomfort to humans or other living organisms, or damages the environment. Air pollution causes deaths and respiratory disease. Air pollution is often identified with major stationary sources, but the greatest source of emissions is mobile sources, mainly automobiles. Gases such as carbon dioxide, which contribute to global warming, have recently gained recognition as pollutants by climate scientists, while they also recognize that carbon dioxide is essential for plant life through photosynthesis.
The atmosphere is a complex, dynamic natural gaseous system that is essential to support life on planet Earth. Stratospheric ozone depletion due to air pollution has long been recognized as a threat to human health as well as to the Earth's ecosystems.
Contents |
There are many substances in the air which may impair the health of plants and animals (including humans), or reduce visibility. These arise both from natural processes and human activity. Substances not naturally found in the air or at greater concentrations or in different locations from usual are referred to as pollutants.
Pollutants can be classified as either primary or secondary. Usually, primary pollutants are substances directly emitted from a process, such as ash from a volcanic eruption, the carbon monoxide gas from a motor vehicle exhaust or sulfur dioxide released from factories.
Secondary pollutants are not emitted directly. Rather, they form in the air when primary pollutants react or interact. An important example of a secondary pollutant is ground level ozone - one of the many secondary pollutants that make up photochemical smog.
Note that some pollutants may be both primary and secondary: that is, they are both emitted directly and formed from other primary pollutants.
Major primary pollutants produced by human activity include:
Secondary pollutants include:
Minor air pollutants include:
Sources of air pollution refer to the various locations, activities or factors which are responsible for the releasing of pollutants in the atmosphere. These sources can be classified into two major categories which are:
Anthropogenic sources (human activity) mostly related to burning different kinds of fuel
Natural sources
Air pollutant emission factors are representative values that attempt to relate the quantity of a pollutant released to the ambient air with an activity associated with the release of that pollutant. These factors are usually expressed as the weight of pollutant divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant (e.g., kilograms of particulate emitted per megagram of coal burned). Such factors facilitate estimation of emissions from various sources of air pollution. In most cases, these factors are simply averages of all available data of acceptable quality, and are generally assumed to be representative of long-term averages.
The United States Environmental Protection Agency has published a compilation of air pollutant emission factors for a multitude of industrial sources. The United Kingdom, Australia, Canada and other countries have published similar compilations, as has the European Environment Agency.
A lack of ventilation indoors concentrates air pollution where people often spend the majority of their time. Radon (Rn) gas, a carcinogen, is exuded from the Earth in certain locations and trapped inside houses. Building materials including carpeting and plywood emit formaldehyde (H2CO) gas. Paint and solvents give off volatile organic compounds (VOCs) as they dry. Lead paint can degenerate into dust and be inhaled. Intentional air pollution is introduced with the use of air fresheners, incense, and other scented items. Controlled wood fires in stoves and fireplaces can add significant amounts of smoke particulates into the air, inside and out. Indoor pollution fatalities may be caused by using pesticides and other chemical sprays indoors without proper ventilation.
Carbon monoxide (CO) poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of charcoal indoors. Chronic carbon monoxide poisoning can result even from poorly adjusted pilot lights. Traps are built into all domestic plumbing to keep sewer gas, hydrogen sulfide, out of interiors. Clothing emits tetrachloroethylene, or other dry cleaning fluids, for days after dry cleaning.
Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. Asbestosis is a chronic inflammatory medical condition affecting the tissue of the lungs. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Sufferers have severe dyspnea (shortness of breath) and are at an increased risk regarding several different types of lung cancer. As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the World Health Organisation (WHO), these may defined as; asbestosis, lung cancer, and mesothelioma (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).
Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micrometre-sized fecal droppings, inhabitants emit methane, mold forms in walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.
The World Health Organization states that 2.4 million people die each year from causes directly attributable to air pollution, with 1.5 million of these deaths attributable to indoor air pollution. "Epidemiological studies suggest that more than 500,000 Americans die each year from cardiopulmonary disease linked to breathing fine particle air pollution. . ." A study by the University of Birmingham has shown a strong correlation between pneumonia related deaths and air pollution from motor vehicles. Worldwide more deaths per year are linked to air pollution than to automobile accidents.[citation needed] Published in 2005 suggests that 310,000 Europeans die from air pollution annually.[citation needed] Direct causes of air pollution related deaths include aggravated asthma, bronchitis, emphysema, lung and heart diseases, and respiratory allergies.[citation needed] The US EPA estimates that a proposed set of changes in diesel engine technology (Tier 2) could result in 12,000 fewer premature mortalities, 15,000 fewer heart attacks, 6,000 fewer emergency room visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.[citation needed]
The worst short term civilian pollution crisis in India was the 1984 Bhopal Disaster. Leaked industrial vapors from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A., killed more than 2,000 people outright and injured anywhere from 150,000 to 600,000 others, some 6,000 of whom would later die from their injuries.[citation needed] The United Kingdom suffered its worst air pollution event when the December 4 Great Smog of 1952 formed over London. In six days more than 4,000 died, and 8,000 more died within the following months.[citation needed] An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Sverdlovsk is believed to have been the cause of hundreds of civilian deaths.[citation needed] The worst single incident of air pollution to occur in the United States of America occurred in Donora, Pennsylvania in late October, 1948, when 20 people died and over 7,000 were injured.
The health effects caused by air pollutants may range from subtle biochemical and physiological changes to difficulty in breathing, wheezing, coughing and aggravation of existing respiratory and cardiac conditions. These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death. The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, the individual's health status and genetics.[citation needed]
A study from 1999 to 2000 by the University of Washington showed that patients near and around particulate matter air pollution had an increased risk of pulmonary exacerbations and decrease in lung function. Patients were examined before the study for amounts of specific pollutants like Pseudomonas aeruginosa or Burkholderia cenocepacia as well as their socioeconomic standing. Participants involved in the study were located in the United States in close proximity to an Environmental Protection Agency. During the time of the study 117 deaths were associated with air pollution. A trend was noticed that patients living closer or in large metropolitan areas to be close to medical help also had higher level of pollutants found in their system because of more emissions in larger cities. With cystic fibrosis patients already being born with decreased lung function everyday pollutants such as smoke emissions from automobiles, tobacco smoke and improper use of indoor heating devices could add to the dissemination of lung function.
Chronic obstructive pulmonary disease (COPD) include diseases such as chronic bronchitis, emphysema, and some forms of asthma. Two researchers Holland and Reid conducted research on 293 male postal workers in London during the time of the Great Smog of 1952 incident and 477 male postal workers in the rural setting. The volume of air that could be exhaled in 1 second (FEV1) was significantly lower in urban employees due to city pollutions such as car fumes and increased amount of cigarette exposure.[verification needed] It is believed that much like cystic fibrosis, by living in a more urban environment serious health hazards become more apparent. Studies have shown that in urban areas patients suffer mucus hypersecretion, lower levels of lung function, and more self diagnosis of chronic bronchitis and emphysema.
In the matter of four days a combination of dense fog and sooty black coal smoke came over the London area. The fog was so dense residents of London could not see in front of them. The extreme reduction in visibility was accompanied by an increase in criminal activity as well as transportation delays and a virtual shut down of the city. During the 4 day period of the fog 12,000 are believed to have been killed.
Cities around the world with high exposure to air pollutants has the possibility of children living within them to develop asthma, pneumonia and other lower respiratory infections as well as a low initial birth rate. Protective measures to ensure the youths health is being taken in cities such as New Delhi, India where buses now use compressed natural gas to help eliminate the “pea-soup” fog. Research by the World Health Organization shows there is the greatest concentration of particulate matter particles in countries with low economic world power and high poverty and population rates. Examples of these countries include Egypt, Sudan, Mongolia, and Indonesia. The Clean Air Act was passed in 1970, however in 2002 at least 146 million Americans were living in areas that did not meet at least one of the “criteria pollutants” laid out in the 1997 National Ambient Air Quality Standards. Those pollutants included: ozone, particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead. Because children are outdoors more and have higher minute ventilation they are more susceptible to the dangers of air pollution.
There are various air pollution control technologies and urban planning strategies available to reduce air pollution.
Efforts to reduce pollution from mobile sources includes primary regulation (many developing countries have permissive regulations),[citation needed] expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as lawn trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use of hybrid vehicles), conversion to cleaner fuels (such as bioethanol, biodiesel, or conversion to electric vehicles).
The following items are commonly used as pollution control devices by industry or transportation devices. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.
![]() |
The examples and perspective in this article or section may not represent a worldwide view of the subject. Please improve this article or discuss the issue on the talk page. |
In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American Air Quality Index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.
In Canada, air quality is typically evaluated against standards set by the Canadian Council of Ministers of the Environment (CCME), an inter-governmental body of federal, provincial and territorial Ministers responsible for the environment. The CCME has set Canada Wide Standards(CWS). These are:
Note that there is no consequence in Canada to not achieving these standards. In addition, these only apply to jurisdictions with populations greater than 100,000. Further, provinces and territories may set more stringent standards than those set by the CCME.
![]() |
It has been suggested that this section be split into a new article entitled Air pollution in the European Union. (Discuss) |
A report from the European Environment Agency shows that road transport remains Europe’s single largest air polluter .
National Emission Ceilings (NEC) for certain atmospheric pollutants are regulated by Directive 2001/81/EC (NECD). As part of the preparatory work associated with the revision of the NECD, the European Commission is assisted by the NECPI working group (National Emission Ceilings – Policy Instruments).
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (the new Air Quality Directive) has entried into force 2008-06-11 .
Individual citizens can force their local councils to tackle air pollution, following an important ruling in July 2008 from the European Court of Justice (ECJ). The EU’s court was asked to judge the case of a resident of Munich, Dieter Janecek, who said that under the 1996 EU Air Quality Directive (Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management ) the Munich authorities were obliged to take action to stop pollution exceeding specified targets. Janecek then took his case to the ECJ, whose judges said European citizens are entitled to demand air quality action plans from local authorities in situations where there is a risk that EU limits will be overshot. .
Air quality targets set by the UK's Department for Environment, Food and Rural Affairs (DEFRA) are mostly aimed at local government representatives responsible for the management of air quality in cities, where air quality management is the most urgent. The UK has established an air quality network where levels of the key air pollutants are published by monitoring centers. Air quality in Oxford, Bath and London is particularly poor. One controversial study performed by the Calor Gas company and published in the Guardian newspaper compared walking in Oxford on an average day to smoking over sixty light cigarettes.
More precise comparisons can be collected from the UK Air Quality Archive which allows the user to compare a cities management of pollutants against the national air quality objectives set by DEFRA in 2000.
Localized peak values are often cited, but average values are also important to human health. The UK National Air Quality Information Archive offers almost real-time monitoring of "current maximum" air pollution measurements for many UK towns and cities. This source offers a wide range of constantly updated data, including:
DEFRA acknowledges that air pollution has a significant effect on health and has produced a simple banding index system is used to create a daily warning system that is issued by the BBC Weather Service to indicate air pollution levels. DEFRA has published guidelines for people suffering from respiratory and heart diseases.
In the 1960s, 70s, and 90s, the United States Congress enacted a series of Clean Air Acts which significantly strengthened regulation of air pollution. Individual U.S. states, some European nations and eventually the European Union followed these initiatives. The Clean Air Act sets numerical limits on the concentrations of a basic group of air pollutants and provide reporting and enforcement mechanisms.
In 1999, the United States EPA replaced the Pollution Standards Index (PSI) with the Air Quality Index (AQI) to incorporate new PM2.5 and Ozone standards.
The effects of these laws have been very positive. In the United States between 1970 and 2006, citizens enjoyed the following reductions in annual pollution emissions:
In an October 2006 letter to EPA, the agency's independent scientific advisors warned that the ozone smog standard “needs to be substantially reduced” and that there is “no scientific justification” for retaining the current, weaker standard. The scientists unanimously recommended a smog threshold of 60 to 70 ppb after they conducted an extensive review of the evidence.
The EPA has proposed, in June 2007, a new threshold of 75 ppb. This is less strict than the scientific recommendation, but is more strict the current standard.
Some industries are lobbying to keep the current standards in place. Environmentalists and public health advocates are mobilizing to support the scientific recommendations.[citation needed]
The National Ambient Air Quality Standards are pollution thresholds which trigger mandatory remediation plans by state and local governments, subject to enforcement by the EPA.
An outpouring of dust layered with man-made sulfates, smog, industrial fumes, carbon grit, and nitrates is crossing the Pacific Ocean on prevailing winds from booming Asian economies in plumes so vast they alter the climate. Almost a third of the air over Los Angeles and San Francisco can be traced directly to Asia. With it comes up to three-quarters of the black carbon particulate pollution that reaches the West Coast.
Libertarians typically suggest propertarian methods of stopping pollution. They advocate strict liability which would hold accountable anyone who causes polluted air to emanate into someone else's airspace. This offense would be considered aggression, and damages could be sought in court under the common law, possibly through class action suits. Since in a libertarian society, highways would be privatized under a system of free market roads, the highway owners would also be held liable for pollution emanating from vehicles traveling along their property. This would give them a financial incentive to keep the worst polluters off of their roads.
Most Polluted World Cities by PM | |
---|---|
Particulate matter, μg/m³ (2004) |
City |
169 | Cairo, Egypt |
150 | Delhi, India |
128 | Kolkata, India (Calcutta) |
125 | Tianjin, China |
123 | Chongqing, China |
109 | Kanpur, India |
109 | Lucknow, India |
104 | Jakarta, Indonesia |
101 | Shenyang, China |
Air pollution is usually concentrated in densely populated metropolitan areas, especially in developing countries where environmental regulations are generally relatively lax or nonexistent. However, even populated areas in developed countries attain unhealthy levels of pollution.
![]() |
Please help improve this section by expanding it. Further information might be found on the talk page or at requests for expansion. (June 2008) |
106 Tons of CO2 per year:
Tons of CO2 per year per capita:
The basic technology for analyzing air pollution is through the use of a variety of mathematical models for predicting the transport of air pollutants in the lower atmosphere. The principal methodologies are:
The point source problem is the best understood, since it involves simpler mathematics and has been studied for a long period of time, dating back to about the year 1900. It uses a Gaussian dispersion model for buoyant pollution plumes to forecast the air pollution isopleths, with consideration given to wind velocity, stack height, emission rate and stability class (a measure of atmospheric turbulence). This model has been extensively validated and calibrated with experimental data for all sorts of atmospheric conditions.
The roadway air dispersion model was developed starting in the late 1950s and early 1960s in response to requirements of the National Environmental Policy Act and the U.S. Department of Transportation (then known as the Federal Highway Administration) to understand impacts of proposed new highways upon air quality, especially in urban areas. Several research groups were active in this model development, among which were: the Environmental Research and Technology (ERT) group in Lexington, Massachusetts, the ESL Inc. group in Sunnyvale, California and the California Air Resources Board group in Sacramento, California. The research of the ESL group received a boost with a contract award from the United States Environmental Protection Agency to validate a line source model using sulfur hexafluoride as a tracer gas. This program was successful in validating the line source model developed by ESL inc. Some of the earliest uses of the model were in court cases involving highway air pollution, the Arlington, Virginia portion of Interstate 66 and the New Jersey Turnpike widening project through East Brunswick, New Jersey.
Area source models were developed in 1971 through 1974 by the ERT and ESL groups, but addressed a smaller fraction of total air pollution emissions, so that their use and need was not as widespread as the line source model, which enjoyed hundreds of different applications as early as the 1970s. Similarly photochemical models were developed primarily in the 1960s and 1970s, but their use was more specialized and for regional needs, such as understanding smog formation in Los Angeles, California.
The greenhouse effect is a phenomenon whereby greenhouse gases create a condition in the upper atmosphere causing a trapping of heat and leading to increased surface and lower tropospheric temperatures. It shares this property with many other gases, the largest overall forcing on Earth coming from water vapour. Other greenhouse gases include methane, hydrofluorocarbons, perfluorocarbons, chlorofluorocarbons, NOx, and ozone. Many greenhouse gases, contain carbon, and some of that from fossil fuels.
This effect has been understood by scientists for about a century, and technological advancements during this period have helped increase the breadth and depth of data relating to the phenomenon. Currently, scientists are studying the role of changes in composition of greenhouse gases from natural and anthropogenic sources for the effect on climate change.
A number of studies have also investigated the potential for long-term rising levels of atmospheric carbon dioxide to cause slight increases in the acidity of ocean waters and the possible effects of this on marine ecosystems. However, carbonic acid is a very weak acid, and is utilized by marine organisms during photosynthesis.