
Code Similarity Detection in Multiple Large Source Trees using Token Hashes

Dr. Warren Toomey

School of IT,
Bond University

Queensland. Australia

Abstract

The ability to find similarities between two source code
bases, or within one code base, has many uses including
the detection of student plagiarism, the identification
of intellectual property violations and the location of
repeated code in a code base amenable to refactoring.
Previous structure-metric approaches have used either
suffix trees or modified Longest Common Subsequence
algorithms to detect code similarities. This paper intro-
ducesctcompare, a tool which uses hashes on fixed-length
token sequences to find code similarities. One significant
benefit of this approach is the ability to search multiple
large trees of source code simultaneously for similarities.
A performance analysis ofctcompare on a large body of
code is also given.

Keywords: Code similarity, code clone, clone detec-
tion, code redundancy, plagiarism, software.

1 Introduction

The issue of source code similarity is of interest to many
areas of the computing milieu. In an academic environ-
ment, code similarity between two or more student sub-
missions may indicate plagiarism or collusion between the
students. In the software industry, code similarity between
products created by two different organisations may indi-
cate theft of source code and other intellectual property.
Code similarity in different sections of a single product
may highlight the need for the product’s source code to be
refactored to remove any code duplication. And in the new
field of computing archaeology (Hunt & Thomas 2002),
the detection of code similarity can identify genealogi-
cal relationships between software systems separated by
time and by organisation, such as the multitudinous family
members of the Unix operating system (Lévénez 2008).

There are several approaches to the detection of code
similarity between two or more code bases. In atex-
tual comparison approach, lines of source code are com-
pared textually, and a similarity metric given based on
the number of lines in common (Ducasse, Rieger &
Demeyer 1999). In acounting-metric approach, features
such as the number of identifiers, keywords and syntax
elements are counted on fragments from each code base
to produce a set of feature vectors (Mayrand, Leblanc &
Merlo 1996); the distance between these vectors are then
compared to find possible code similarity. By parsing
each code base and creatingabstract syntax trees, subtrees
are compared to search for code similarity (Baxter, Yahin,
Moura, Sant’Anna & Bier 1998). And in theconcept clone
approach, features such as abstract data types and algo-
rithms are identified in each code base and compared for
similarity (Marcus & Maletic 2001). Several papers pro-
vide an excellent overview of these different approaches

(Bellon, Koschke, Antoniol, Krinke & Merlo 2007, Roy,
Cordy & Koschke 2009).

This paper concentrates on one other approach to the
detection of code similarity, thestructure-metric approach
which uses lexical analysis. Each code base to be com-
pared is first lexically analysed to produce a sequence of
tokens. These token sequences are then compared to find
common token subsequences which indicate similarities
between the code bases. We outline a new approach to
the structure-metric approach which uses hashes of token
tuples. The benefits of this approach over the existing re-
search include the simultaneous comparison of multiple
large code bases, fast performance and the export of seri-
alised token streams for sensitive (e.g. proprietary) code
bases.

2 Previous Work

Baker’s approach to code comparison is to create token se-
quences from each input line of code (Baker 1995). Each
sequence is passed through a function which, after sepa-
rating out the literals and identifiers, generates a value for
the sequence. The literals and identifiers are encoded as
a parameter to the function; the encoding preserves the
order of literals and identifiers, so code similarity can be
detected even when literals and identifiers are renamed.
Two lines of code are deemed similar if their function
value plus encoded parameters match. The function val-
ues plus encoded parameters are stored in a suffix tree
(Gusfield 1997) which can be built and searched in time
linear to the input size, although Baker notes that some
worst-case inputs lead to quadratic running time. The line-
based approach does fail to identify code similarity when
lines of code have either been split into multiple lines or
multiple lines merged together. Kamiyaet al. also use to-
ken sequences and a suffix tree to findcode clones: du-
plicated code within a single large code base (Kamiya,
Kusumoto & Inoue 2002). While not line-based, token
sequences are created that begin with certain tokens (e.g.
’{’, selection keywords such as ‘if’, ‘for’ & ’while’, decla-
ration keywords such as ‘class’, ‘enum’ & ‘typedef’ etc.).
Time and space complexity isO(m.n), wherem is the
length of the largest code clone andn is the input length
in tokens.

Token sequences can be viewed as strings, and
so detecting code similarity is a form of finding the
Longest Common Subsequence (LCS) between two
strings (Bergroth, Hakonen & Raita 2000). Several LCS
algorithms have been used in code comparison. Tradi-
tional LCS algorithms such as the Levenshtein distance
algorithm (Levenshtein 1966) preserve substring ordering,
so if a section of source code in one input is moved, the
algorithms identify this as a number of differences instead
of a single change in the code. Alternatives have been pro-
posed by Heckel (Heckel 1978) and Tichy (Tichy 1984) to
overcome this limitation.

Both Wise (Wise 1996) and Precheltet al. (Prechelt,
Malpohl & Philippsen 2000) use the Karp-Rabin Greedy-
String-Tiling algorithm (Wise 1993), a form of LCS which
compares pairs of strings and also permits the transposi-
tion of substrings. The GST algorithm has two phases.
In the first, a triply-nested loop searches for all tokens in
code base A which match tokens in code base B, with the
innermost loop attempting to extend the match to find the
longest sequence of token matches. In the second phase,
all the tokens that form sequences of tokens matches from
phase 1 are marked so they will not be used for further
matches in phase 1. Both phases are repeated until no fur-
ther matches are found. GST has a time complexity of
O(N3); both Wise and Prechelt then use the Karp-Rabin
algorithm and other optimisations to reduce this complex-
ity further toO(N1.12) andO(N) in practice, respectively.

3 Ctcompare: Code Comparison using Token Hashes

The aim ofctcompare, our tool to detect code similarity,
is to take two or more large trees (i.e. multiple files) of
source code as input, convert these into streams of tokens,
and to find all sequences of tokens of lengthN or greater
which occur in the code trees; the value forN is chosen
at run-time. Our work draws upon, combines and extends
the ideas of the previous research. As with Baker, we ab-
stract a short sequence of tokens into a unique value: here,
the sequence size is fixed atN tokens and a hash function
produces the unique value.

These hash values are used to find code similarities of
lengthN, but this is unlikely to be the maximal length of
a code similarity. Existing LCS algorithms could be used
here to find the full extent of the token sequence match; we
have implemented an alternative algorithm which uses the
token hashes, not the tokens themselves, to perform the to-
ken sequence matching. As a by-product of the approach,
we can compare token sequences from multiple code trees
at the same time whereas traditional LCS algorithms are
only able to compare two strings simultaneously.

4 A Serialised, Exportable Token Stream

In other token-based structure-metric code similarity
tools, the lexical and similarity analyses are performed at
the same time by the same tool, so the stream of tokens
from each source tree are kept internal to the tool. The
tool thus requires the actual source code to both trees be
available for any code comparison to be performed.

This requirement for source code availability limits the
use of such a tool. As an example, consider the situa-
tion where one organisation believes its source code has
been misappropriated and used as part of a competitor’s
product. Without access to the competitor’s source code,
the company is unable to determine the likelihood of such
code theft.

With ctcompare, we decided to specify a file format for
the token stream generated by the lexical analysis stage
of the code comparison. Such a file format allows the
lexical details of a source code tree to be exported in a
serialised format without revealing the full details of the
original source code. Instead, one needs only the result-
ing token stream files in order to perform the comparison.
In the above example of an organisation that believes its
source has been misappropriated, the organisation could
ask a court for an independent witness or amicus curiae
to perform a code similarity comparison. Both organisa-
tions could provide the amicus curiae with an exported to-
ken stream, thus avoiding the need to reveal their original
source code.

Any such token stream must therefore allow two con-
flicting goals to be achieved:

1. The stream must reveal enough of the original source
code so useful code similarity comparisons can be
performed between trees: all similarities should be
found, and few false positives should be reported.

2. The stream must not reveal enough of the original
source code to allow that source code to be reverse
engineered.

The design of the Code Token File (CTF) format used by
the ctcompare tool balances both requirements. A CTF
file represents the lexical elements of multiple source code
files in a tree in a serialised form, with one variable-length
record for each file in the tree. Each record begins with
the source file’s name and the time of its last modifica-
tion. This is then followed by a sequence of tokens which
represent the structural elements of the source code. Most
tokens are one octet in length and represent keywords, op-
erators and other syntax elements. However, there are 5
specific token types which are represented by an octet for
the token followed by two octets for the token’s value:

• an identifier such as a variable, constant, or function
name;

• a numeric literal;

• a character literal;

• a string literal; and

• a label name.

The two octets following the token are used to store a 16-
bit hash of the original textual value of the identifier, literal
value or label. For example, consider the following short
fragment of C code:void print_word(
har *str) {
har *
;
=str;while ((
!='\0') && (
!=' '))put
har(
++);put
har('\n');}
Keywords such asvoid andwhile, operators such as*,=, != and++, and the parentheses and braces are repre-
sented as 1-octet tokens. The literal and identifier values
are hashed down to 16 bits and stored after their respec-
tive token octets. Thus, given the CTF representation of
the above code, only the following reconstruction would
be possible:void id13043 (
har * id6928) {
har * id23749;id23749 = id6928;while ((id23749 != '
7388') &&(id23749 != '
20789'))id32886(id23749++);id32886 ('
12652');}
The hash value for identifiers and literal values allows
code trees to be compared, as the hash value from one tree
can be compared to a hash value in a second code tree. The
hash does not reveal the original literal or identifier value
although a dictionary attack on the hash would provide a
set of potential identifier or literal values.

We chose a 16-bit hash value for identifiers and literal
values to balance the effectiveness of the code comparison
with the need to minimise full disclosure of the original
source code. A larger hash size (e.g. 32 bits) would elimi-
nate false positives in the code comparison but increase the

likelihood of a successful dictionary attack (due to the de-
crease in hash collisions), and so reveal too much detail of
the original source code. A smaller hash size (e.g. 8-bits)
would produce many false positives in the code compar-
ison but minimise the effectiveness of a dictionary attack
on the hash values.

5 Token Tuples, Tuple Description Nodes and the
Run List

The aim of thectcompare tool is to find all sequences of
tokens of lengthN or greater which occur in two or more
source code trees. The value ofN is arbitrary, and the
default run-time value of 16 tokens was chosen to exclude
common short sequences of source code such asfor (i=0; i < CONST; i++).

The comparison algorithm usestuples (i.e. subse-
quences) ofN consecutive tokens, along with any asso-
ciated identifier/literal hash values, as indicators of code
similarity. If multiple code trees share a common tuple,
then this indicates code similarity of at leastN tokens be-
tween the trees. The token tuples are also used to find the
longest sequence of tokens shared between the code trees.

For each tuple ofN tokens,ctcompare keeps a tuple
description node (TDN) with this information:

• the identity of the CTF file from where this tuple
originates;

• the offset within the CTF file of the first token in the
tuple;

• the name of the source code file and the line number
where the first tuple occurs; and

• a pointer to the TDN of the immediately preceding
tuple, if any.

Tuples and the TDNs from all of the source code trees are
kept byctcompare in a data store, to be discussed.

Ctcompare reports the details of each specific run of
similarity it finds: which source files are involved, the be-
ginning and the end of the similarity. A run of code simi-
larity is stored in a Run structure which contains:

• pointers to the TDNs in two code trees where the run
of similarity starts;

• pointers to the TDNs in two code trees where the run
of similarity ends; and

• the length of the run of similarity in tokens.

6 The Comparison Algorithm

The algorithm used byctcompare to find code similarities
in multiple code trees is shown as Algorithm 1 on the next
page. Token tuples are used to find initial runs of com-
monality between code trees; the tuples are also used to
extend these runs until the longest match is found.

The data store of tuples and associated TDNs is ini-
tially empty and grows as each new tuple is processed.
This is done to prevent duplicate matches: for example,
if all tuples are initially placed in the data store and if a
search on tupleT1 will find T2, then a search onT2 would
also findT1. This on-the-fly tuple insertion strategy is used
in the current version ofctcompare which builds and keeps
the data store in memory. The alternative approach of ini-
tially storing all the tuples in the data store would be re-
quired where the data store is persistent (e.g. stored on
disk), but duplicate tuple matches would have to be dealt
with. We used the on-disk approach in earlier versions of
ctcompare, but we now choose to keep the data store in
memory to optimise performance.

7 Implementation of the Algorithm

The above algorithm as given does not define a specific
implementation; however, its efficiency depends on:

1. the cost of searching for a tuple and associated TDN
in the data store;

2. the cost of inserting a tuple and and associated TDN
into the data store;

3. the cost of extending an existing similarity run, given
matching tuplesT andT2; and

4. the cost of adding a new similarity run to the list of
similarity runs.

Search and insert operations on the data store need to have
low complexity, as do the operations on the list of similar-
ity runs. As will be shown in the next section, the TDN
operations on the data store have the highest cost on the
algorithm’s performance.

The ctcompare tool as implemented keeps the data
store and the list of similarity runs in memory. This also
places a bound on the size of the data store and similar-
ity list and hence the size of the input to the tool. Dur-
ing the implementation ofctcompare, we evaluated tech-
niques such as binary search trees, AVL trees, single-level
and multi-level hash tables. In the end we chose a single-
level hash table with chains as this provided the best abso-
lute performance and also the lowest memory usage.

Each tuple ofN tokens and associated literal/identifier
hashes is itself hashed to a 32-bit value. To access the
data store, 24 bits of the hash value are used to find the
bucket in a single-level hash table, and the bucket points
to a chain of TDNs. Each TDN is augmented to hold the
remaining 8 bits of the tuple hash so hash collisions at the
bucket level can be resolved.

Inserting a new tuple and TDN into the data store is
O(1) as the hash function used isO(1) and the TDN can
be inserted at the beginning of the chain. Searching for
matching tuples in the TDN isO(N) whereN is the size
of the chain which may contain the matches.

7.1 Drawbacks of Using Tuple Hashes

While hashed tuples provides low complexity and high ab-
solute performance, their use in thectcompare algorithm
also bring some drawbacks which must be addressed.

For a run of similarity ofN tokens to be found between
two code trees, the two tuples of sizeN must match. With
the use of hashed tuples, there is now the likelihood of
false matches due to the probability of hash collisions:
1/232 for the 32-bit hash function. To avoid these false
matches, thectcompare algorithm is modified as follows:

• tuples of sizeN −1 (and associated TDNs and hash
values) are created instead of sizeN; and

• the algorithm performs searches usingN − 1 sized
tuples, but only similarity runs of sizeN are reported.

While the probability of two unrelated tuple hashes match-
ing is 1/232, the probability of the following two unrelated
tuple hashes also matching is 1/232

∗1/232= 1/264. This
eliminates false tuple matches for all practical purposes,
albeit at a small performance cost.

A 24-bit hash table is also used (when two tuples
match) to search the list of similarity runs for an exist-
ing run to extend. In this instance, the buckets of the hash
table do not contain a chain of runs; rather, each bucket
holds exactly zero or one similarity runs. When the hash
table is searched, there is no possibility that the wrong
run will be extended due to a hash collision, as each Run

Algorithm 1 ctcompare’s comparison algorithmfor (all tokenised sour
e trees) {for (all
onse
utive sequen
es of N tokens from the sour
e files in the tree) {build a token tuple T of the N tokens plus their identifiers, and build its TDN;for (ea
h existing tuple T2 in the data store whi
h mat
hes T) {if (T and T2 would extend an existing similarity run R) {modify R so T and T2 are now the end tuples of the run;} else {
reate a new similarity run R where T and T2are the start and the end tuples of the run;add R to the set of similarity runs;}}add tuple T and its TDN to the data store;}}output all of the similarity runs found;
node contains enough information to prevent this. How-
ever, when a new run needs to be inserted into the hash
table, there is the chance that the bucket holds an existing
Run node. This node is evicted from the hash table. This
causes some runs of code similarity found to be reported
as several smaller runs of similarity: no similarities will
be lost, but their size may be misreported byctcompare.

8 Performance Analysis

We measured the performance of thectcompare tool using
subsets of two data sets. The platform used was one core
of a 3GHz Intel i5 CPU in a desktop PC with 4G of DDR3
RAM. The main limitation of the current version is that the
tuple/TDN data store and the list of similarity runs must fit
into main memory; therefore, we gave increasingly large
data sets toctcompare until main memory was exhausted.

We designedctcompare to be able to find code simi-
larities across multiple source code trees totaling millions
of lines of code; thus, we chose a real-world data set to
analyse the performance. This consists of several related
Unix source code trees of various sizes along with some
arbitrarily chosen code trees which have no similarities1.
The code trees were arranged in order of increasing token
count. Large code trees were split into separate inputs of
approximately 2.5 millions tokens to increase the number
of data points. Successively larger groups of code trees
were given as inputs toctcompare so we could measure
the run time of the tool against the input size. We took
measurements of the run time, the cumulative number of
token tuples, and the number of runs of similarity found;
the results are shown in the following graph.

In the graph, the x-axis represents the number of tuples
in the input. The run time is shown as a scatter plot of
points with a fitted curve, and the number of similarities
found between the code trees is shown as a dashed line.
The top-right point showsctcompare can find 14.5 million
runs of similarity from 13.2 millions lines of code across
35 code trees in 74 seconds.

1The data sets are available at http://minnie.tuhs.org/Programs/Ctcompare.

Multiple Code Trees

R
u

n
 T

im
e

 (
s
e

c
o

n
d

s
)

0

10

20

30

40

50

60

70

80

N
u

m
b

e
r
 o

f
S

im
il
a

r
it

ie
s

0

5.0x106

1.0x107

1.5x107

2.0x107

Cumulative Number of Tuples

0 2x107 4x107 6x107

Run Time

Run Time curve fit

of Similarities

The scatter plot indicates the run-time complexity of
ctcompare is O(N2) with respect to the input size in tu-
ples (hence, tokens), as shown by the fitted curve2. The
other factor in the tool’s performance is number of runs of
similarity found between the input code trees; this makes
sense as the inner loop of the algorithm will depend upon
the number of similarities. However, theO(N2) perfor-
mance based on the input size is puzzling as the algorithm
has only a single loop based on the number of tuples.

To isolate the quadratic behaviour we performed a sec-
ond performance analysis on two large pseudo-randomly
generated token streams, chosen so as to minimise any
runs of similarity. The two streams were truncated at in-
creasingly larger sizes so the run-time ofctcompare could
be measured against an increasingly larger input size. The
results are shown in the following graph.

In the graph, the x-axis represents the number of to-
kens used as input. The run time is shown as a scatter
plot of points with a fitted curve, and the number of tu-
ple comparisons is shown as a dashed line. Only 17 runs
of similarity are found for the top-right data point, so the
run-time effect from the number of runs of similarity is
negligible and can be discounted.

With two random code trees,ctcompare still exhibits
anO(N2) run-time complexity based on the input size, and
the number of comparisons between tuples from each tree
is alsoO(N2). Given there were next to no similarities
found between the two random trees, there should have
been no matches between tuples in the two code trees. The
number of tuple comparisons should have been close to
zero and not 105 or more as shown.

2runtime = 8.1∗ 10−15
∗ tuplecount2 + 6.1∗ 10−7

∗ tuplecount + 1.3∗ 10−6
∗

similarities

Two Random Code Trees

R
u

n
 T

im
e
 (

s
e
c
o

n
d

s
)

0

20

40

60

80

100

120

140

N
u

m
b

e
r
 o

f
T
u

p
le

 C
o

m
p

a
r
is

o
n

s

0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

Cumulative Number of Tuples

0 2x107 4x107 6x107

Run Time
Run Time curve fit
of Tuple Comparisons

This behaviour is due to the size of the index into the
single-level hash table to find chained TDNs: if it is too
small for the entire input, then the chains in each bucket
become too long and hold many TDNs that do not match
the one being searched for. By resizing the index into the
single-level TDN hash table, as shown in the following
graph, we can improvectcompare’s performance and flat-
ten its quadratic behaviour. This does come at the expense
of main memory usage.

Random Code Trees,
Different Hash Table Sizes

R
u

n
 T

im
e
 (

s
e
c
o
n

d
s
)

0

50

100

150

200

Cumulative Number of Tuples

0 107 2x107 3x107 4x107 5x107 6x107 7x107

24 bits

25 bits

27 bits

26 bits

23 bits

9 Other Features

One ofctcompare’s features is its ability to find code sim-
ilarities across multiple code trees simultaneously. The
algorithm will also find code similarities between files
within one code tree. As token tuples for one tree are
added to the data store, the linefor (ea
h existing tuple T2 in the datastore whi
h mat
hes T) {
implies new tuples from a tree will be compared against
previous tuples from the same tree. This allowsctcom-
pare to find duplicated code within a single tree that is
amenable to refactoring. To ensurectcompare only finds
similar code between trees, a run-time option selects be-
tween the above loop and this one:for (ea
h existing tuple T2 whi
h mat
hes Tbut not from the same tree) {
Apart from the run-time choice of the value forN (the
minimum number of tokens to consider for similarity) and
the choice of comparison within or between trees,ctcom-
pare also offers these options:

• output of the matching token streams, or output of
the actual lines of code found to be similar; and

• to match identifiers exactly, or to detect remappings
of identifiers.

Remapped identifiers occur for several reasons: stu-
dents often rename variables to disguise plagiarism; dur-
ing refactoring, names of variables or constants may be
changed to make the code more readable. We search for
remapped identifiers in a very different way to Baker.

If identifiers are renamed, then their 16-bit hash values
will change and so we cannot include these hash values in
the token tuple of sizeN. When searching for code simi-
larities with remapped identifiers, we only hash the tokens
in the tuple and leave out the identifier hash values. Once
a potential similarity run is found and the algorithm at-
tempts to extend the run, we keep a 1-to-1 correspondence
table for the (hashed) identifiers found in the run, similar
to the following:

Identifier Tag Tag Identifier
x id1 ⇔ id1 b
y id2 ⇔ id2 a
z id3 ⇔ id3 c

At run-time, the maximum size of the table is set, e.g.
3 corresponding identifiers. The algorithm allows a run of
similarity to be extended until either more identifiers are
found than can fit into the table (e.g. a variable named
‘q’), or if a correspondence between identifiers in the run
violates the correspondence in the table (e.g. variable ‘c’
starts to match against variable ‘y’). The run-time selec-
tion to search for remapped identifiers does impose a sig-
nificant performance penalty onctcompare.

Ctcompare uses single-octet tokens to createN-sized
token tuples, so any mechanism which analyses an in-
put stream into single-octet tokens can be used; in other
words, ctcompare is source language neutral. We have
written lexical analysers inctcompare for these inputs:
C and C++, Java, Python, Perl, assembly language,
hexadecimal-encoded binary and plain text. The last anal-
yser treats every word as a string literal; the comparison
is therefore one of matching hashed sequences of hashed
literals.

10 Future Work

Ctcompare is at present a mature tool and we cannot see
any significant future changes to the algorithm for single-
CPU use. There are still a few deficiencies that need to be
addressed. The input size toctcompare is constrained by
the size of available memory. At present we have written
ctcompare to run on 32-bit Unix and Linux systems; we
would like to re-target the tool to work on 64-bit platforms.
Not only would this allow for more than 4Gbytes of main
memory, but it would also allow us to increase the size
of the single-level TDN hash table. This would improve
performance by reducing the size of the TDN chains in
each hash bucket.

One other future option would be the modification of
the algorithm to work across multiple CPUs or CPU cores,
but this would require a significant reworking ofctcom-
pare’s tuple insertion strategy along with associated data
structure locking.

11 Conclusion

The token-based structure-metric approach to detect code
similarity across several code trees has seen substantial re-
search in the past. With our toolctcompare we take a novel
approach which deviates from the traditional use of suffix
trees and Longest Common Subsequence variations. In-
stead, we take hashes of fixed-length token subsequences
(along with hashes on identifiers and literals) and use these

to find minimal runs of similarity. The token hashes are
then used instead of the tokens to find the maximal length
of the runs of code similarity. This also has the effect
of eliminating any false positives due to initial hash col-
lisions.

By using a single-level hash table with chains we have
optimised the absolute performance ofctcompare, but the
algorithm’s relative performance is stillO(N2) whereN is
the input size in tokens. This complexity can be flattened
somewhat by increasing the hash size used as the index
into the TDN hash table.

The algorithm used inctcompare allows us to find code
similarity within one code tree, two code trees or multiple
code trees simultaneously. The use of hashes gives a com-
pact representation of the input code, allowing us to com-
pare tens of millions of lines of code within a 32-bit PC’s
available memory. Other features ofctcompare include
the exporting of code trees in serialised token format and
the ability to find remapped literals during the code com-
parison.

References

Baker, B. S. (1995), On Finding Duplication And Near-
Duplication in Large Software Systems,in ‘WCRE
’95: Proceedings of the Second Working Conference
on Reverse Engineering’, IEEE Computer Society,
Washington, DC, USA, p. 86.

Baxter, I., Yahin, A., Moura, L., Sant’Anna, M. & Bier, L.
(1998), ‘Clone detection using abstract syntax trees’,
IEEE International Conference on Software Mainte-
nance 0, 368.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J. & Merlo,
E. (2007), ‘Comparison and evaluation of clone de-
tection tools’,IEEE Trans. Softw. Eng. 33, 577–591.

Bergroth, L., Hakonen, H. & Raita, T. (2000), ‘A survey
of longest common subsequence algorithms’,Inter-
national Symposium on String Processing and Infor-
mation Retrieval 0, 39.

Ducasse, S., Rieger, M. & Demeyer, S. (1999), ‘A lan-
guage independent approach for detecting duplicated
code’, Proceedings of the IEEE International Con-
ference on Software Maintenance p. 109.

Gusfield, D. (1997),Algorithms on Strings, Trees and Se-
quences, Cambridge University Press.

Heckel, P. (1978), ‘A technique for isolating differences
between files’,Commun. ACM 21, 264–268.
*http://doi.acm.org/10.1145/359460.359467

Hunt, A. & Thomas, D. (2002), ‘Software archaeology’,
IEEE Software 19, 20–22.

Kamiya, T., Kusumoto, S. & Inoue, K. (2002), ‘CCFinder:
a Multilinguistic Token-based Code Clone Detection
System for Large Scale Source Code’,IEEE Trans.
Softw. Eng. 28(7), 654–670.

Lévénez, E. (2008), ‘Unix History Timeline’.
*http://www.levenez.com/unix/

Levenshtein, V. I. (1966), ‘Binary codes capable of
correcting deletions, insertions, and reversals’,
Soviet Physics Doklady 10(8), 707–710.
*http://sascha.geekheim.de/wp-
content/uploads/2006/04/levenshtein.pdf

Marcus, A. & Maletic, J. (2001), ‘Identification of
high-level concept clones in source code’,Interna-
tional Conference on Automated Software Engineer-
ing 0, 107.

Mayrand, J., Leblanc, C. & Merlo, E. (1996), ‘Experiment
on the automatic detection of function clones in a
software system using metrics’,Proceedings of the
IEEE International Conference on Software Mainte-
nance pp. 244–253.

Prechelt, L., Malpohl, G. & Philippsen, M. (2000),
‘Finding Plagiarisms Among a Set of Programs
with JPlag’,Journal of Universal Computer Science
8, 1016–1038.

Roy, C. K., Cordy, J. R. & Koschke, R. (2009), ‘Com-
parison and evaluation of code clone detection tech-
niques and tools: A qualitative approach’,Science of
Computer Programming 74(7), 470 – 495. Special
Issue on Program Comprehension (ICPC 2008).

Tichy, W. F. (1984), ‘The string-to-string correction prob-
lem with block moves’,ACM Trans. Comput. Syst.
2, 309–321.
*http://doi.acm.org/10.1145/357401.357404

Wise, M. (1993), Running Karp-Rabin matching and
greedy string tiling, Basser Dept. of Computer Sci-
ence, University of Sydney.

Wise, M. J. (1996), ‘YAP3: Improved Detection of Sim-
ilarities in Computer Program and Other Texts’,
SIGCSE Bull. 28(1), 130–134.

