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Preface 
 
This book is targeted for use in an introductory lower-division assembly language 
programming or computer organization course. After students are introduced to the MIPS 
architecture using this book, they will be well prepared to go on to an upper-division 
computer organization course using a textbook such as “Computer Organization and 
Design” by Patterson and Hennessy. This book provides a technique that will make MIPS 
assembly language programming a relatively easy task as compared to writing complex 
Intel 80x86 assembly language code. Students using this book will acquire an 
understanding of how the functional components of computers are put together, and how 
a computer works at the machine language level. We assume students have experience in 
developing algorithms, and running programs in a high-level language. 
 
Chapter 1 provides an introduction to the basic MIPS architecture, which is a modern 
Reduced Instruction Set Computer (RISC). Chapter 2 shows how to develop code 
targeted to run on a MIPS processor using an intermediate pseudocode notation similar to 
the high-level language “C”, and how easy it is to translate this notation to MIPS 
assembly language.  
 
Chapter 3 is an introduction to the binary number system, and the rules for performing 
arithmetic, as well as detecting overflow. Chapter 4 explains the features of the PCSpim 
simulator for the MIPS architecture, which by the way is available for free. Within the 
remaining chapters, a wealth of programming exercises are provided, which every 
student needs to become an accomplished assembly language programmer. Instructors 
are provided with a set of PowerPoint slides. After students have had an opportunity to 
develop their pseudocode and their MIPS assembly language code for each of the 
exercises, they can be provided with example solutions via the PowerPoint slides. 
 
In Chapter 5 students are presented with the classical I/O algorithms for decimal and 
hexadecimal representation. The utility of logical operators and shift operators are 
stressed. In Chapter 6, a specific argument passing protocol is defined. Most significant 
programming projects are a teamwork effort. Emphasis is placed on the importance that 
everyone involved in a teamwork project must adopt the same convention for parameter 
passing. In the case of nested function calls, a specific convention is defined for saving 
and restoring values in the temporary registers. In Chapter 7 the necessity for reentrant 
code is explained, as well as the rules one must follow to write such functions. Chapter 8 
introduces exceptions and exception processing. In Chapter 9 a pipelined implementation 
of the MIPS architecture is presented, and the special programming considerations 
dealing with delayed loads and delayed branches are discussed. The final chapter briefly 
describes the expanding opportunities in the field of embedded processors for 
programmers who have a solid understanding of the underlying processor functionality. 
 

Robert Britton 
 May 2002
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CHAPTER 1

The MIPS Architecture 
If at first you don’t succeed, 
Skydiving is definitely not for you. 
 

1.1 Introduction
This book provides a technique that will make MIPS assembly language programming a 
relatively easy task as compared to writing Intel 80x86 assembly language code. We 
are assuming that you have experience in developing algorithms, and running programs 
in some high level language such as Pascal, C, C++, or JAVA. One of the benefits of 
understanding and writing assembly language code is that you will have new insights into 
how to write more efficient, high-level language code. You will become familiar with the 
task that is performed by a compiler and how computers are organized down to the basic 
functional component level. You may even open new opportunities for yourself in the 
exploding field of embedded processors. 
 
The first thing everyone must do to apply this technique is to become familiar with the 
MIPS architecture. The architecture of any computer is defined by the registers that are 
available (visible) to the assembly language programmer, the instruction set, the memory 
addressing modes, and the data types. 
 

1.2 The Datapath Diagram
It is very useful to have a picture of a datapath diagram that depicts the essential 
components and features of the MIPS architecture. Please note that there are many 
different ways that an architecture can be implemented in hardware. These days, 
pipelined and superscalar implementations are common in high-performance processors. 
An initial picture of a MIPS datapath diagram will be the straightforward simple diagram 
shown in Figure 1.1. This is not a completely accurate diagram for the MIPS architecture; 
it is just a useful starting point.
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Figure 1.1 MIPS Simplified Datapath Diagram  
 

1.3 Instruction Fetch and Execute
Computers work by fetching machine language instructions from memory, decoding and 
executing them. Machine language instructions and the values that are operated upon are 
encoded in binary. Chapter 3 introduces the binary number system. As we progress 
through the first two chapters, we will be expressing values as decimal values, but keep 
in mind that in an actual MIPS processor these values are encoded in binary. The basic 
functional components of the MIPS architecture shown in Figure 1.1 are: 
(a)  Program Counter (PC) 
(b) Memory  
(c) Instruction Register (IR) 
(d) Register File 
(e) Arithmetic and Logic Unit (ALU) 
(f) Control Unit 
 
Interconnecting all of these components, except the control unit, are busses. A bus is 
nothing more than a set of electrical conducting paths over which different sets of binary 
values are transmitted. Most of the busses in the MIPS architecture are 32-bits wide. In 
other words, 32 separate, tiny wires running from a source to a destination.  
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In this datapath diagram, we have the situation where we need to route information from 
more than one source to a destination, such as the ALU. One way to accomplish this is 
with a multiplexer. Multiplexers are sometimes called data selectors. In Figure 1.1, 
multiplexers are represented by the triangle-shaped symbols. Every multiplexer with two 
input busses must have a single control signal connected to it. This control signal comes 
from the control unit. The control signal is either the binary value zero or one, which is 
sent to the multiplexer over a single wire. In Figure 1.1, we have not shown any of the 
control signals, because it would make the diagram too busy. When the control signal is 
zero, the 32-bit value connected to input port zero (0) of the multiplexer will appear on 
the output of the multiplexer. When the control signal is one, the 32-bit value connected 
to input port one (1) of the multiplexer will appear on the output of the multiplexer. The 
acronym “bit” is an abbreviation of “binary digit.” 
 

1.4 The MIPS Register File
The term “register” refers to an electronic storage component. Every register in the MIPS 
architecture is a component with a capacity to hold a 32-bit binary number. Anyone who 
has ever used an electronic hand-held calculator has experienced the fact that there is 
some electronic component inside the calculator that holds the result of the latest 
computation. 
 
The MIPS architecture has a register file containing 32 registers. See Figure 1.2. Each 
register has a capacity to hold a 32-bit value. The range of values that can be represented 
with 32 bits is -2,147,483,648 to +2,147,483,647. When writing at the assembly language 
level almost every instruction requires that the programmer specify which registers in the 
register file are used in the execution of the instruction.  A convention has been adopted 
that specifies which registers are appropriate to use in specific circumstances. The 
registers have been given names that help to remind us about this convention. Register 
$zero is special; it is the source of the constant value zero. Nothing can be stored in 
register $zero. Register number 1 has the name $at, which stands for assembler 
temporary. This register is reserved to implement “macro instructions” and should not be 
used by the assembly language programmer. Registers $k0 and $k1 are used by the 
kernel of the operating system and should not be changed by a user program. 
 

1.5 The Arithmetic and Logic Unit (ALU)
The ALU, as its name implies, is a digital logic circuit designed to perform binary 
arithmetic operations, as well as binary logical operations such as “AND,”  “OR,” and 
“Exclusive OR.” Which operation the ALU performs depends upon the operation code in 
the Instruction Register. 
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Number Value Name 
0 0 $zero 
1 $at 
2 $v0 
3 $v1 
4 $a0 
5 $a1 
6 $a2 
7 $a3 
8 $t0 
9 $t1 

10 $t2 
11 $t3 
12 $t4 
13 $t5 
14 $t6 
15 $t7 
16 $s0 
17 $s1 
18 $s2 
19 $s3 
20 $s4 
21 $s5 
22 $s6 
23 $s7 
24 $t8 
25 $t9 
26 $k0 
27 $k1 
28 $gp 
29 $sp 
30 $fp 
31 $ra 

Figure 1.2 The Register File 

1.6 The Program Counter (PC)
After a programmer has written a program in assembly language using a text editor, the 
mnemonic representation of the program is converted to machine language by a utility 
program called an assembler.  The machine language code is stored in a file on disk.  
When someone wants to execute the program, another utility program, called a linking 
loader, loads and links together all of the necessary machine language modules into main 
memory. The individual instructions are stored sequentially in memory. The Program 
Counter (PC) is a register that is initialized by the operating system to the address of the 
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first instruction of the program in memory. Notice in Figure 1.1 that the address in the 
program counter is routed to the address input of the memory via a bus. After an 
instruction has been fetched from memory and loaded into the instruction register (IR), 
the PC is incremented so that the CPU will have the address of the next sequential 
instruction for the next instruction fetch. The name Program Counter  is misleading. A 
better name would be Program Pointer, but unfortunately the name has caught on, and 
there is no way to change this tradition.  
 

1.7 Memory
Most modern processors are implemented with cache memory. Cache memory is located 
on the CPU chip. Cache memory provides fast memory access to instructions and data 
that were recently accessed from the main memory. How cache memory is implemented 
in hardware is not the subject of this text. For our purposes, the functionality of cache 
memory will be modeled as a large array of locations where information is stored and 
from which information can be fetched, one “word” at a time, or stored one “word” at a 
time. The term “word” refers to a 32-bit quantity. Each location in memory has a 32-bit 
address. In the MIPS architecture, memory addresses range from 0 to 4,294,967,295. The 
MIPS architecture specifies that the term “word” refers to a 32-bit value and the term 
“byte” refers to an 8-bit value. The MIPS architecture specifies that a word contains four 
bytes, and that the smallest addressable unit of information that can be referenced in 
memory is a byte. The address of the first byte in a word is also the address of the 32-bit 
word. All instructions in the MIPS architecture are 32 bits in length. Therefore, the 
program counter is incremented by four after each instruction is fetched. 
 

1.8 The Instruction Register (IR)
The Instruction Register (IR) is a 32-bit register that holds a copy of the most recently 
fetched instruction. In the MIPS architecture three different instruction formats are 
defined, R - format, I - format, and J – format. (See Appendix C for details) 
 

1.9 The Control Unit
To fetch and execute instructions, control signals must be generated in a specific 
sequence to accomplish the task. As you have already learned, multiplexers must have 
control signals as inputs. Each register has an input control line, which when activated 
will cause a new value to be loaded into the register. The ALU needs control signals to 
specify what operation it should perform. The cache memory needs control signals to 
specify when a read or write operation is to be performed. The register file needs a 
control signal to specify when a value should be written into the register file. All of these 
control signals come from the control unit. The control unit is implemented in hardware 
as a “finite state machine.” How fast the computer runs is controlled by the clock rate. 
The clock generator is an oscillator that produces a continuous waveform as depicted in 
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Figure 1.3. The clock period is the reciprocal of the clock frequency. All modern 
computers run with clock rates in the mega-hertz (MHz) range. ( Mega = 106 )

Figure 1.3 Clock Waveform 
 

1.10 Instruction Set
Refer to Appendix C for a list of the basic integer instructions for the MIPS Architecture 
that we will be concerned with in this introductory level textbook. Note that unique 
binary codes assigned to each of the instructions. For a complete list of MIPS 
instructions, a good reference is the book by Kane and Heinrich “MIPS RISC 
Architecture.”  In reviewing the list of instructions in Appendix C you will find that the 
machine has instructions to add and subtract. The operands (source values) for these 
operations come from the register file and the results go to the register file. When 
programming in assembly language we use a mnemonic to specify which operation we 
want the computer to perform  and we specify the register file locations using the names 
of the register file locations. Let us suppose that an assembly language programmer wants 
to add the contents of register $a1 to the contents of register $s1, and to place the results 
in register $v1. The assembly language instruction to accomplish this is: 

add $v1, $a1, $s1 
 

The equivalent pseudocode statement would be: $v1 = $a1 + $s1 
 
The MIPS architecture includes logical bit-wise instructions such as “AND”, “OR”, and 
“Exclusive-OR”. There are instructions to implement control structures such as: 

 “if ... then ... else ...” 
 

The multiply instruction multiplies two 32-bit binary values and produces a 64-bit 
product which is stored in two registers named High and Low. The following code 
segment shows how the lower 32 bits of the product of $a1 times $s1 can be moved into 
$v1: 

mult $a1, $s1 
mflo $v1 
 

The following divide instruction divides the 32-bit binary value in register $a1 by the 32-
bit value in register $s1. The quotient is stored in the Low register and the remainder is 
stored in the High register. The following code segment shows how the quotient is moved 
into $v0 and the remainder is moved into $v1: 
 

div $a1, $s1 
mflo $v0 
mfhi $v1 
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1.11 Addressing Modes
The MIPS architecture is referred to as a Reduced Instruction Set Computer (RISC). The 
designers of the MIPS architecture provide a set of basic instructions. (See Appendix C) 
In the case of fetching values from main memory or storing values into main memory, 
only one addressing mode was implemented in the hardware. The addressing mode is 
referred to as “base address plus displacement.” The MIPS architecture is a Load/Store 
architecture, which means the only instructions that access main memory are the Load 
and Store instructions. A load instruction accesses a value from memory and places a 
copy of the value found in memory in the register file. For example, the instruction: 
 

lw $s1, 8($a0)          
 
will compute the effective address of the memory location to be accessed by adding 
together the contents of register $a0 (the base address) and the constant value eight (the 
displacement). A copy of the value accessed from memory at the effective address is 
loaded into register $s1. The equivalent pseudocode statement would be:  

$s1 = Mem[$a0 + 8] 
 
Notice  in this example the base address is the value in register $a0, and the displacement 
is the constant value 8. The base address is always the content of one of the registers in 
the register file. The displacement is always a constant. The constant value can range 
from -32,768 to +32,767. In the case of the “Load Word” instruction, the effective 
address must be a number that is a multiple of four (4), because every word contains four 
bytes. 
 
The syntax of the assembly language load instruction is somewhat confusing. If someone 
were to write a new MIPS assembler, the following syntax would do a better job of 
conveying to the user what the instruction actually does:  lw   $s1, [$a0+8]  
 
The following is an example of a “Store Word” instruction: 
 

sw $s1, 12($a0)         
 

When the hardware executes this instruction it will compute the effective address of the 
destination memory location by adding together the contents of register $a0 and the 
constant value 12. A copy of the contents of register $s1 is stored in memory at the 
effective address. The equivalent pseudocode statement would be: 
 Mem[$a0 + 12] = $s1 
 
From the point of view of an assembly language programmer, memory can be thought of 
as a very long linear array, and the effective address is a pointer to some location in this 
array that the operating system has designated as the data segment. The Program Counter 
is a pointer into this same array, but to a different segment called the program segment. 
The operating system has allocated one other segment in memory called the stack 
segment. 
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1.12 Summary
When we write a program in assembly language we are creating a list of instructions that 
we want the processor to perform to accomplish some task (an algorithm). As soon as we 
have acquired a functional model of the processor and know exactly what instructions the 
processor can perform, then we will have mastered the first necessary component to 
becoming a MIPS assembly language programmer. 
 
The continuous step by step functional operation of our simplified model for the MIPS 
architecture can be described as: 
 
1. An instruction is fetched from memory at the location specified by the Program 

counter. The instruction is loaded into the Instruction Register. The Program 
Counter is incremented by four. 

 
2. Two five bit codes Rs and Rt within the instruction specify which register file 

locations are accessed to obtain two 32-bit source operands. 
 
3. The two 32-bit source operands are routed to the ALU inputs where some 

operation is performed depending upon the Op-Code in the instruction. 
 
4. The result of the operation is placed back into the register file at a location 

specified by the 5-bit Rd code in the Instruction Register. Go to step 1. 
 

Exercises
1.1 Explain the difference between a register and the ALU. 
1.2 Explain the difference between assembly language and machine language. 
1.3 Explain the difference between Cache Memory and the Register File. 
1.4 Explain the difference between the Instruction Register and the Program Counter. 
1.5 Explain the difference between a bus and a control line. 
1.6 Identify a kitchen appliance that contains a finite state machine. 
1.7 If a 500 MHz machine takes one clock cycle to fetch and execute an instruction, 

then what is the instruction execution rate of the machine? 
1.8 How many instructions could the above machine execute in one minute? 
1.9 Let’s suppose we have a 40-year-old computer that has an instruction execution 

rate of one thousand instructions per second. How long would it take in days, 
hours, and minutes to execute the same number of instructions you derived for the 
500 MHz machine? 

1.10 What is an algorithm? 
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CHAPTER 2

Pseudocode 
Where does satisfaction come from? 
A satisfactory. 
 

2.1 Introduction
Experienced programmers develop their algorithms using high-level programming 
constructs such as:  

• If (condition)  do {this block of code} else do {that block of code}; 
• While (condition) do {this block of code}; 
• For ( t0=1, t0 < s0, t0++) do {this block of code}; 

 
The key to making MIPS assembly language programming easy, is to initially develop 
the algorithm using a high level pseudocode notation with which we are already familiar. 
Then in the final phase translate these high level pseudocode expressions into MIPS 
assembly language. In other words in the final phase we are performing the same 
function that a compiler performs, which is to translate high-level code into the 
equivalent assembly language code. 
 

2.2 Develop the Algorithm in Pseudocode
When documenting an algorithm in a language such as Pascal, C, C++, or JAVA, 
programmers use descriptive variable names such as: speed, volume, size, count, amount, 
etc. After the program is compiled, these variable names correspond to memory 
locations, and the values stored in these memory locations correspond to the values of 
these variables. A compiler will attempt to develop code in such a way as to keep the 
variables that are referenced most often in processor registers, because access to a 
variable in a processor register is faster than access to random access memory (RAM). 
MIPS has 32 processor registers whose names were defined in Table 1.1. In the case of 
the MIPS architecture, all of the data manipulation instructions and the control 
instructions require that their operands be in the register file. 
 
A MIPS assembly language programmer must specify within each instruction which  
processor registers are going to be utilized. For example, we may have a value in register 
$t0 corresponding to speed, a value in register $t1 corresponding to volume, a value in 
register $t2 corresponding to size, and a value in register $t3 corresponding to count. 
When using pseudocode to document an assembly language program, we must use the 
names of the registers we intend to use in the assembly language code. It is advisable to 
create a cross-reference table that defines what each processor register is being used for 
within the algorithm. (For example $t0: Sum, $v0: Count) We use register names in 
pseudocode so that the translation to assembly language code will be an easy process to 
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perform and because we want documentation that describes how the features of the MIPS 
architecture were used to implement the algorithm. Unless we identify the registers being 
used, the pseudocode is quite limited in terms of deriving the assembly language program 
or having any correspondence to the assembly language code. 
 
Pseudocode for assembly language programs will have the appearance of Pascal or C in 
terms of control structures and arithmetic expressions. Descriptive variable names will 
usually appear only in the Load Address (la) instruction where there is a reference to a 
symbolic memory address. In assembly language we define and allocate space for 
variables in the data segment of memory using assembler directives such as “.word” and 
“.space”. Strings are allocated space in memory using the assembler directive “.asciiz”.
See Appendix A, for a list of the most commonly used assembler directives. 
 
Now, for an example, let us suppose we want to write an assembly language program to 
find the sum of the integers from one to N, where N is a value read in from the keyboard. 
In other words do the following:  1 + 2 + 3 + 4 + 5 + 6 + 7 + .........+ N 
Below you will find a pseudocode description of the algorithm and the corresponding 
assembly language program, where processor register $t0 is used to accumulate the sum, 
and processor register $v0 is used as a loop counter that starts with the value N and 
counts down to 0. 
 
Using a text editor create the following program file and experiment with the different 
features of the MIPS simulator. All MIPS assembly language source code files must be 
saved as text only. Chapter 4 provides a description of how to download the MIPS 
simulator. Note that the algorithm used here sums the integers in reverse order. 
 
# Program Name: Sum of Integers 
# Programmer: YOUR NAME 
# Date last modified: 
# Functional Description: 
# A program to find the Sum of the Integers from 1 to N, where N is a value  
# input from the keyboard. 
##################################################################   
# Pseudocode description of algorithm: 
# main: cout << “Please input a value for N” 
# cin >> v0  
# If ( v0 <= 0 ) stop 
# t0 = 0; 
# While (v0 > 0 ) do  
# {
# t0 = t0 + v0;    
# v0 = v0 - 1;
# }
# cout << t0; 
# go to main 
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##################################################################### 
# Cross References: 
# v0: N,   
# t0: Sum 
##################################################################### 

.data 
prompt: .asciiz “\n   Please Input a value for N =  ” 
result:  .asciiz “   The sum of the integers from 1 to N is ” 
bye:  .asciiz “\n  **** Adios Amigo - Have a good day ****” 

.globl main 

.text 
main:  

li $v0, 4  # system call code for Print String 
la $a0, prompt  # load address of prompt into $a0 
syscall   # print the prompt message 

li $v0, 5  # system call code for Read Integer 
syscall   # reads the value of N into $v0 

blez $v0,  end  # branch to end if  $v0  < =   0  
li $t0, 0  # clear register $t0 to zero 

loop:   
add  $t0, $t0, $v0  # sum of integers in register $t0 
addi $v0, $v0, -1  # summing integers in reverse order 
bnez $v0,  loop  # branch to loop if $v0 is != zero 

li $v0, 4  # system call code for Print String 
la $a0, result  # load address of message into $a0 
syscall   # print the string 

li $v0, 1  # system call code for Print Integer 
move $a0,  $t0  # move value to be printed to $a0  
syscall   # print sum of integers 
b main  # branch to main 

end:  li $v0, 4  # system call code for Print String 
la $a0, bye  # load address of msg. into $a0 
syscall   # print the string 

li $v0, 10  # terminate program run and 
syscall   # return control to  system 

MUST HAVE A BLANK LINE AT THE END OF THE TEXT FILE 
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2.3 Register Usage Convention
Within the register file different sets of registers have been given names to remind the 
programmer of a convention, which all MIPS assembly language programmers are 
expected to abide by. If all the members of a programming team do not adhere to the 
same convention, the entire effort will result in disaster.  To simulate this situation 
everyone using this book is expected to adhere to the same convention.  Programs should 
run correctly, even if the class members randomly exchange their functions. 
 
Programs of any complexity typically involve a main program that calls functions. Any 
important variables in the main program that must be maintained across function calls 
should be assigned to registers $s0 through $s7. As programs become more complex, 
functions will call other functions. This is referred to as nested function calls. A function 
that does not call another function is referred to as a “leaf function.” When writing a 
function, the programmer may utilize registers $t0 through $t9 with the understanding 
that no other code modules expect values in these registers will be maintained. If 
additional registers are needed within the function, the programmer may use only 
registers $s0 through $s7 if he/she first saves their current values on the stack and 
restores their values before exiting the function. Registers $s0 through $s7 are referred to 
as callee-saved registers. Registers $t0 through $t9 are referred to as caller-saved 
registers. This means that if the code module requires that the contents of certain “t” 
registers must be maintained upon return from a call to another function, then it is the 
responsibility of the calling module to save these values on the stack and restore the 
values upon returning from the function call. Registers $a0 through $a3 are used to pass 
arguments to functions, and registers $v0 and $v1 are used to return values from 
functions. These conventions are covered in more detail in Chapter 6. 
 

2.4 The MIPS Instruction Set
When the MIPS architecture was defined, the designers decided that the machine would 
have instructions to perform the operations listed in Appendix C.  At that time, the 
designers also decided on a binary operation code for each instruction, and the specific 
instruction format in binary. Given the requirement of the different instructions it was 
necessary to define three different formats. Some instructions are encoded in R format, 
some in I format and a few in J format.  The list of instructions in Appendix C is not a 
complete list. The other instructions not in Appendix C involve floating point 
instructions, coprocessor instructions, cache instructions, instructions to manage virtual 
memory, and instructions concerned with the pipeline execution. 
 
The designers of the MIPS assembler, the program that translates MIPS assembly 
language code to MIPS binary machine language code, also made some decisions to 
simplify the task of writing MIPS assembly language code. The MIPS assembler 
provides a set of macro (also called synthetic or pseudo) instructions. Every time a 
programmer specifies a macro instruction, the assembler replaces it with a set of actual 
MIPS instructions to accomplish the task. Appendix D provides a list of macro 
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instructions. For example, let us suppose a programmer used the absolute value macro 
instruction: 
 

abs $s0,  $t8          
 
The MIPS assembler would then insert the following three instructions to accomplish the 
task: 

addu $s0, $t0, $t8 
bgez $t8, positive 
sub $s0, $zero, $t8 

positive: 
 
Using the macro instructions simplifies the task of writing assembly language code, and 
programmers are encouraged to use the macro instructions. Note that when there is a 
need to calculate time and space parameters for a module of code the abs macro 
instruction would correspond to three clock cycles to execute (worse case), and three 
memory locations of storage space. The macro instructions have been placed in a separate 
appendix to assist the programmer in recognizing these two classes of instructions. 
 

2.5 Translation of an “IF THEN ELSE” Control Structure
The “If (condition) then do {this block of code} else do {that block of code}” control 
structure is probably the most widely used by programmers. Let us suppose that a 
programmer initially developed an algorithm containing the following pseudocode. 
Can you describe what this algorithm accomplishes? 
 
if ($t8 < 0) then 

{$s0 = 0 - $t8;  
 $t1 = $t1 +1} 

else  
{$s0 = $t8; 
 $t2 = $t2 + 1} 
 

When the time comes to translate this pseudocode to MIPS assembly language, the 
results could appear as shown below. In MIPS assembly language, anything on a line 
following the number sign (#) is a comment. Notice how the comments in the code below 
help to make the connection back to the original pseudocode. 

bgez $t8, else  # if ($t8 is > or = zero) branch to else 
sub $s0, $zero, $t8  # $s0 gets the negative of $t8 
addi $t1, $t1, 1  # increment $t1 by 1 
b next   # branch around the else code 

else: 
ori $s0, $t8, 0  # $s0 gets a copy of $t8 
addi $t2, $t2, 1  # increment $t2 by 1 

next: 
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2.6 Translation of a “WHILE” Control Structure
Another control structure is “ While (condition) do {this block of code}”. 
Let us suppose that a programmer initially developed a function described by the 
following pseudocode where an “if statement” appears within the while loop. 
Can you describe what this function accomplishes? 
 
$v0 = 1 
While ($a1 < $a2) do  

{
$t1 = mem[$a1] 
$t2 = mem[$a2] 
if ($t1 != $t2) go to break 
$a1 = $a1 + 1 
$a2 = $a2 - 1 

}
return 

break: 
$v0 = 0 
return 

 
Here is a translation of the above “while” pseudocode into MIPS assembly language 
code. 

li $v0, 1   # Load Immediate $v0 with the value 1 
loop: 

bgeu $a1, $a2, done  # If( $a1 >= $a2) Branch to done 
lb $t1, 0($a1)  # Load a Byte: $t1 = mem[$a1 + 0] 
lb $t2, 0($a2)  # Load a Byte: $t2 = mem[$a2 + 0] 
bne $t1, $t2, break  # If ($t1 != $t2) Branch to break 
addi $a1, $a1, 1  # $a1 = $a1 + 1 
addi $a2, $a2, -1  # $a2 = $a2 - 1 
b loop   # Branch to loop 

break: 
li $v0, 0   # Load Immediate $v0 with the value 0 

done: 
 
2.7 Translation of a “FOR LOOP” Control Structure
Obviously a “ for loop ” control structure is very useful. Let us suppose that a 
programmer initially developed an algorithm containing the following pseudocode. 
In one sentence, can you describe what this algorithm accomplishes? 
 
$a0 = 0; 
For ( $t0 =10; $t0 > 0; $t0 = $t0 -1) do {$a0 = $a0 + $t0} 
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The following is a translation of the above “for-loop” pseudocode to MIPS assembly 
language code. 
 

li $a0, 0  #  $a0 = 0 
li $t0, 10  # Initialize loop counter to 10 

loop: 
add $a0, $a0, $t0 
addi $t0, $t0, -1 # Decrement loop counter 
bgtz $t0, loop # If ($t0 > 0) Branch to loop 

 

2.8 Translation of Arithmetic Expressions
Looking at the arithmetic expression below, what fundamental formula in geometry 
comes to mind? 
 
$s0 = srt( $a0 * $a0 + $a1 * $a1); 
 
A translation of this pseudocode arithmetic expression to MIPS assembly language 
follows. In this case, we are assuming there is a library function that we can call that will 
return the square root of the argument, and we are assuming that the results of all 
computations do not exceed 32-bits. At this point, it is essential for the beginning 
programmer to go to Appendix C and study how the MIPS architecture accomplishes 
multiplication and division.  
 

mult $a0, $a0 # Square $a0 
mflo $t0  # t0 = Lower 32-bits of product 
mult $a1, $a1 # Square $a1 
mflo $a1  # t1 = Lower 32-bits of product 
add $a0, $t0, $t1 # a0 = t0 + t1 
jal srt  # Call the square root function 
move $s0, $v0 # Result of sqr is returned in $v0 (Standard Convention) 

 
Here is another arithmetic expression. What fundamental formula in geometry comes to 
mind?   $s0 = ( π * $t8 * $t8) / 2; 
 
A translation of this pseudocode arithmetic expression to MIPS assembly language 
follows. 

li $t0, 31415 # Pi scaled up by 10,000 
mult $t8, $t8 # Radius squared 
mflo $t1  # Move lower 32-bits of product in LOW register to $t1 
mult $t1, $t0 # Multiply by Pi 
mflo $s0  # Move lower 32-bits of product in LOW register to $s0 
sra $s0, $s0, 1 # Division by two (2) is accomplished more efficiently 

# using the Shift Right Arithmetic instruction 
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2.9 Translation of a “SWITCH” Control Structure
Below you will find a pseudocode example of a “switch” control structure where the 
binary value in register $s0 is shifted left either one, two, or three places depending upon 
what value is read in.  

 $s0 = 32; 
top: cout  << “Input a value from 1 to 3” 
 cin >> $v0  
 switch ($v0) 

{case(1):  {$s0 = $s0 << 1; break;} 
 case(2):  {$s0 = $s0 << 2; break;} 
 case(3):  {$s0 = $s0 << 3; break;} 
 default:    goto top; } 

cout << $s0   
 
A translation of  this pseudocode into MIPS assembly language  appears below: 
 

.data 

.align  2 
jumptable: .word top, case1, case2, case3 
prompt : .asciiz  “\n\n Input a value from 1 to 3: ” 

.text 
top:   

li $v0, 4   # Code to print a string 
la $a0, prompt 
syscall 
li $v0, 5   # Code to read an integer 
syscall 
blez $v0, top  # Default for less than one 
li $t3, 3 
bgt $v0, $t3, top  # Default for greater than 3 
la $a1, jumptable  # Load address of jumptable 
sll $t0, $v0, 2  # Compute word offset 
add $t1, $a1, $t0  #Form a pointer into jumptable 
lw $t2, 0($t1)  # Load an address from jumptable 
jr $t2   # Jump to specific case “switch” 

case1:  sll $s0, $s0, 1  # Shift left logical one bit 
b output 

case2:  sll $s0, $s0, 2  # Shift left logical two bits 
b output 

case3:  sll $s0, $s0, 3  # Shift left logical three bits 
output: 

li $v0, 1   # Code to print an integer is 1 
move $a0, $s0  # Pass argument to system in $a0 
syscall    # Output results 
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2.10 Assembler Directives
A list of assembler directives appears in Appendix A.  To allocate space in memory for a 
one-dimensional array of 1024 integers, the following construct is used in the C 
language: 
 
int array[1024] ; 
 
In MIPS assembly language, the corresponding construct is: 

.data 
array: .space  4096 
 
Notice that the assembler directive “.space” requires that the amount of space to be 
allocated must be specified in bytes. Since there are four bytes in a word, an array of 
1024 words is the same as an array of 4096 bytes. 
 
To initialize a memory array with a set of 16 values corresponding to the powers of 2  
( 2N with  N going from 0 to 15) , the following construct is used in the C language: 
 
int  pof2[16] ={ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,    

32768 }  
 
In MIPS assembly language the corresponding construct is: 
 

.data 
pof2: .word 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 
 
The terminology used to describe the specific elements of an array is the same as that 
used in high-level languages: Element zero “pof2[0]” contains the value one (1). Element 
one “pof2[1]” contains the value 2, etc. 
 
The following is an example of how assembly language code can be written to access 
element two in the array and place a copy of the value in register $s0.  The Load Address 
(la) macro instruction is used to initialize the pointer “$a0” with the base address of the 
array that is labeled “pof2.” 
 

la $a0, pof2  # a0 =&pof2 
lw $s0, 8($a0)  # s0 = MEM[a0 + 8] 

 
The Load Address (la) macro instruction initializes the pointer “$a0” with the base 
address of the array “pof2.” After executing this code, register $s0 will contain the value 
4. To access specific words within the array, the constant offset must be some multiple of 
four. The smallest element of information that can be accessed from memory is a byte, 
which is 8 bits of information. There are 4 bytes in a word. The address of a word is the 
same as the address of the first byte in a word. How would you write MIPS code to place 
the last value in the pof2 array into $t0? 
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2.11 Input and Output 
SPIM provides a set of system services to perform input and output, which will be 
explained in detail in Chapter 4. At the pseudocode level, it is sufficient to indicate input 
and output using any construct the student feels familiar with. Looking back at the first 
example program in section, 2.2 we find the following constructs: 
Output a string:  cout << “Please input a value for N” 
Input a decimal value: cin >> v0  
Output a value in decimal: cout << t0; 
 
By studying the assembly language code in section 2.2 one could discover what sequence 
of assembly language instructions is required to accomplish the above I/O operations. 
 
Exercises
2.1 Using Appendix A, translate each of the following pseudocode expressions into MIPS 

assembly language: 
(a) t3 = t4 + t5 – t6; 
(b) s3 = t2 / (s1 – 54321); 
(c)  sp = sp –16; 
(d) cout << t3; 
(e) cin  >> t0; 
(f) a0 = &array; 
(g) t8 = Mem(a0); 
(h) Mem(a0+ 16) = 32768; 
(i) cout  << “Hello World”; 
(j) If (t0 < 0) then t7 = 0 – t0 else t7 = t0; 
(k) while ( t0 != 0) { s1 = s1 + t0; t2 = t2 + 4; t0 = Mem(t2) }; 
(l) for ( t1 = 99; t1 > 0; t1=t1 -1)  v0 = v0 + t1; 
(m) t0 = 2147483647 - 2147483648; 
(n) s0 = -1 * s0; 
(o) s1 = s1 * a0; 
(p) s2 = srt(s02 + 56) / a3; 
(q) s3 = s1 - s2 / s3; 
(r) s4 = s4 * 8; 
(s) s5 = π * s5; 
 

2.2 Analyze the assembly language code that you developed for each of the above 
pseudocode expressions and calculate the number of clock cycles required to 
fetch and execute the code corresponding to each expression. Assume it takes one 
clock cycle to fetch and execute every instruction except multiply, which requires 
32 clock cycles, and divide, which requires 38 clock cycles. 
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2.3 Show how the following expression can be evaluated in MIPS assembly 
language, without modifying the contents of the “s” registers: 

 
$t0 =  ( $s1  -   $s0  / $s2) * $s4 ; 

 
2.4 The datapath diagram for the MIPS architecture shown in Figure 1.1 with only 

one memory module is referred to as a von Neumann architecture. Most 
implementations of the MIPS architecture use a Harvard architecture, where there 
are separate memory modules for instructions, and data. Draw such a datapath 
diagram. 

 
2.5 Show how the following pseudocode expression can be efficiently implemented 

in MIPS assembly language:  
 
$t0 = $s0  / 8  -  2 * $s1 + $s2; 
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CHAPTER 3

Number Systems 
Where do you find the trees in Minnesota? 
Between da twos and da fours. 
 

3.1 Introduction
The decimal number system uses 10 different digits (symbols), (0,1, 2, 3, 4, 5, 6 ,7 ,8 ,9). 
The binary number system uses only two digits, 0 and 1, which are represented by two 
different voltage levels within a computer’s electrical circuits. Any value can be 
represented in either number system as long as there is no limit on the number of digits we 
can use. In the case of the MIPS architecture, values in registers and in memory locations 
are limited to 32 bits. The range of values that can be stored in a register or a memory 
location is -2,147,483,648 to +2,147,483,647 (Assuming the use of the two’s complement 
number system). In this chapter, we will provide a method for converting values in one 
number system to another. We will also discuss the process of binary addition and 
subtraction; and how to detect if overflow occurred when performing these operations.  
 

3.2 Positional Notation
No doubt, the reason we use the decimal number system is that we have ten fingers. 
Possibly, for primitive cultures it was sufficient to communicate a quantity by holding up 
a corresponding number of fingers between one and ten, and associating a unique sound or 
symbol with these ten quantities.  
 
The Babylonians used written symbols for numbers for thousands of years before they 
invented the zero symbol. The zero symbol is the essential component that makes it 
possible to use the positional number system to represent an unlimited range of integer 
quantities. When we express some quantity such as “2056” in the decimal number system 
we interpret this to mean: 2*1000 + 0*100 + 5*10 + 6*1 
 
The polynomial representation of 2056 in the base ten number system is: 
 

N = 2 * 103 + 0 * 102 + 5 * 101 + 6 * 100

Let us assume that aliens visit us from another galaxy where they have evolved with only 
eight fingers. If these aliens were to communicate the quantity “2056” in the base 8 
number system (octal), how would you find the equivalent value as a decimal number? 
The method is to evaluate the following polynomial: 



22

N = 2 * 83 + 0 * 82 + 5 * 81 + 6 * 80

N = 2 * 512 + 0 * 64 + 5 * 8 + 6 = 1070
Therefore, 2056 in the base eight number system is equivalent to 1070 in the base ten 
number system. Notice that these aliens would only use eight different symbols for their 
eight different digits. These symbols might be (0,1, 2, 3, 4, 5, 6, 7) or they might be some 
other set of symbols such as (Ω, √, ∑, ß, ∂, &, $, %); initially the aliens would have to 
define their digit symbols by holding up an equivalent number of fingers. 
 

3.3 Converting Binary Numbers to Decimal Numbers 
Polynomial expansion is the key to converting a number in any alien number system to the 
decimal number system, The binary number system may be an alien number system as far 
as you are concerned, but you now possess the tool to convert any binary number to the 
equivalent decimal value. As an exercise, convert the binary number 011010 to decimal. 
N = 0* 25 + 1* 24 + 1* 23 + 0* 22 + 1* 21 + 0* 20

Memorizing the following powers of two is an essential component of mastering this 
number conversion process. 
 
20 21 22 23 24 25 26 27 28 29 210

 
1 2 4 8 16 32 64 128 256 512 1024

N = 0* 32 + 1*16  + 1* 8  +  0* 4 + 1* 2  +  0*1 

Therefore, the binary number 011010 is equivalent to 26 in the decimal number system. 
 

3.4 Detecting if a Binary Number is Odd or Even
Given any binary number, there is a simple way to determine if the number is odd or even.  
If the right most digit in a binary number is a one, then the number is odd. For example 
00011100 is an even number, which is the value 28 in the decimal number system. The 
value 0001001 is an odd number, specifically the value 9 in decimal. 
 
When writing MIPS assembly code the most efficient method for determining if a number 
is odd or even is to extract the right most digit using the logical AND instruction followed 
by a branch on zero instruction. This method requires only two clock cycles of computer 
time to accomplish the task. The use of division to determine if a number is odd or even is 
very inefficient because it can take as much as 38 clock cycles for the hardware to execute 
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the division instruction. The following is a segment of MIPS assembly language code that 
will add one (1) to register $s1 only if the contents of register $s0 is an odd number:  

andi $t8, $s0, 1 # Extract the Least Significant Bit (LSB) 
beqz $t8 even # If LSB is a zero Branch to even 
addi $s1, $s1, 1 # Increment count in s1 

even: 
 

3.5 Multiplication by Constants that are a Power of Two
Another important feature of the binary number system is that multiplication by two (2) 
may be accomplished by shifting the number left one bit. Multiplication by four (4) can be 
accomplished by shifting left two bits. In general, multiplication by any number that is a 
power of two can be accomplished in one clock cycle using a shift left instruction. For 
many implementations of the MIPS architecture it takes 32 clock cycles to execute the 
multiply instruction, but it takes only one clock cycle to execute a shift instruction. Let us 
suppose that the following pseudocode describes a desired operation: 
 

$v1 = $t3 * 32 
 
The most efficient way to execute this in MIPS assembly language would be to perform a 
shift left logical by 5 bits. 

sll $v1, $t3,  5 #  $v1 = $t3 << 5      
 
Notice that the constant 5 specifies the shift amount, and you should recall that: 
 25 = 32
Let us suppose the original value in register $t3 is the binary number 0000000000011010, 
which is equivalent to 26 in the decimal number system. After shifting the binary number 
left 5 bits we would have 0000001101000000, which is 832 in the decimal number system 
(26 * 32). The analogous situation in the decimal number system is multiplication by ten. 
Taking any decimal number and shifting it left one digit is equivalent to multiplication by 
ten. 
 

3.6 The Double and Add Method
A quick and efficient method for converting binary numbers to decimal involves visually 
scanning the binary number from left to right, starting with the left most 1. As you 
visually scan to the right, double the value accumulated so far, and if the next digit to the 
right is a 1, add 1 to your accumulating sum. 
 
In a previous example, we had the binary number 00011010, which is equivalent to 26 
decimal. Let us use the double and add method to convert from binary to decimal. 
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Start with left most 1 
1 doubled plus 1 = 3 

3 doubled = 6 
6 doubled plus 1 = 13 

13 doubled = 26 

011010 
 
3.7 Converting Decimal Numbers to Binary Numbers
A simple procedure to convert any decimal numbers to binary follows. Essentially this 
procedure is the inverse of the double and add process explained above. The process 
involves repeatedly dividing the decimal number by two and recording the quotient and 
the remainder. After each division by two, the remainder is the next digit in the binary 
representation of the number. Recall that any time an odd number is divided by two the 
remainder is one. So the remainder obtained after performing the first division by two 
corresponds to the least significant digit in the binary number. The remainder after 
performing the second division is the next more significant digit in the binary number. 
 

35  =  1 0 0 0 1 1
17 1     (least significant digit) 
8 1
4 0
2 0
1 0
0 1 (most significant digit) 

Quotient Remainder  
 

3.8 The Two’s Complement Number System
Up to this point, there has been no mention of how to represent negative binary numbers. 
With the decimal number system, we commonly use a sign magnitude representation. We 
do not use a sign magnitude representation for binary numbers. For binary numbers we 
use the Signed Two’s Complement Number System. (Sometimes referred to as the radix 
complement.) The major benefit of the two’s complement number system is that it 
simplifies the design of the hardware to perform addition and subtraction. Numbers 
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represented in the two’s complement number system have a straightforward polynomial 
expansion. For example, an 8-bit binary number would be evaluated using the following 
polynomial expansion: 
 N = - d7 * 27 + d6 * 26 + d5 * 25 + ....+ d1 * 21 + d0

In the two’s complement number system, all numbers that have a one in the most 
significant digit (MSD) are negative numbers. The most significant digit has a negative 
weight associated with it. In the two’s complement number system, the value plus 1 as an 
8-bit number would be 00000001 and minus 1 would be 11111111. Evaluate the 
polynomial to verify this fact.  
 

3.9 The Two’s Complement Operation
When we take the two’s complement of a number, the result will be the negative of the 
value we started with.  One method to find the two’s complement of any number is to 
complement all of the digits in the binary representation and then add one to this new 
binary value. 
 
For example, take the value plus 26, which as an 8-bit binary number is 00011010. What 
does the value minus 26 look like in the two’s complement number system? Performing 
the two’s complement operation on 00011010 we get 11100110. 
Original value 26  00011010 
Complement every Bit 11100101 
Add one    +1
This is the value minus 26 11100110 in the two’s complement number system. 
Evaluate the polynomial to verify that this is the correct binary representation of minus 26. 
 

3.10 A Shortcut for Finding the Two’s Complement of any Number
There is a simple one-step procedure that can be used to perform the two’s complement 
operation on any number. This is the preferred procedure because it is faster and less 
prone to error. With this procedure the original number is scanned from right to left, 
leaving all least significant zeros and the first one unchanged, and then complementing the 
remaining digits to the left. Let’s apply this procedure with the following example. 
Suppose we start with the value minus 26. If we perform this shortcut two’s complement 
operation on minus 26 we should get plus 26 as a result. 
 
Original value -26  11100110 
 
Resulting value +26  00011010 

Complemented 
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3.11 Sign Extension
When the MIPS processor is executing code, there are a number situations where 8-bit and 
16-bit binary numbers need to be expanded into a 32-bit representation. For values 
represented in the two’s complement number system, this a trivial process. The process 
simply involves extending a copy of the sign bit into all of the additional significant digits. 
For example, the value 6 represented as an 8-bit binary number is:                                                       
“ 00000110”, and the value 6 as a 32-bit binary number is 
“00000000000000000000000000000110”.  
 
The same rule applies for negative numbers. For example the value minus 6 represented as 
an 8-bit binary number is:                       11111010, and the value -6 as a 32-bit binary 
number is 11111111111111111111111111111010. 
 
3.12 Binary Addition 
With the two’s complement number system adding numbers is a simple process, even if 
the two operands are of different signs. The sign of the result will be generated correctly 
as long as overflow does not occur. (See section 3.14) Simply keep in mind that if the sum 
of three binary digits is two or three, a carry of a 1 is generated into the next column to the 
left. Notice in the example below, in the third column, we add one plus one and get two 
(10) for the result. The sum bit is a zero and the carry of one is generated into the next 
column. In this next column, we add the carry plus the two ones within the operands and 
get three (11) as a result. The sum bit is a one and the carry of one is generated into the 
next column. 
 
Decimal  Binary   
 29   00011101   
 14 00001110
Sum 43   00101011 

3.13 Binary Subtraction
Computers perform subtraction by adding the two’s complement of the subtrahend to the 
minuend. This is also the simplest method for humans to use when dealing with binary 
numbers. Let us take a simple 8-bit example where we subtract 26 from 35. 
 
Minuend is 35  00100011             00100011 
Subtrahend is 26    -00011010 Take two’s complement and add  +11100110

00001001 

Notice when we add the two binary numbers together, there is a carry out. We don’t care 
if there is carry out. Carry out does not indicate that overflow occurred. Converting the 
binary result to decimal we get the value nine, which is the correct result. 
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3.14 Overflow Detection
In the two’s complement number system, detection of overflow is a simple proposition. 
When adding numbers of opposite signs, overflow is impossible. When adding numbers of 
the same sign, the result must have the same sign as the operands, otherwise overflow 
occurred. The most important thing to remember is that a carry out at the most significant 
stage does not signify that overflow has occurred in the two’s complement representation. 
When two negative numbers are added together, there will always be a carry out at the 
most significant digit, but this does not mean that overflow occurred. 
 
In mathematics, we refer to a number line that goes to infinity in the positive and negative 
domains. In the case of computers with limited precision, we do not have a number line, 
instead we have a number circle. When we add one to the most positive value, overflow 
occurs, and the result is the most negative value in the two’s complement number system. 
Let us take a very small example. Suppose we have a computer with only 4 bits of 
precision. The most positive value is 7, which is (0111) in binary. The most negative value 
is minus 8, which is (1000) in binary. With the two’s complement number system, the 
range of values in the negative domain is one greater than in the positive domain. 
 

3.15 Hexadecimal Numbers
The hexadecimal number system is heavily used by assembly language programmers 
because it provides a compact method for communicating binary information. The 
hexadecimal number system is a base 16 number system. In this case, the 16 unique 
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symbols used as digits in hexadecimal numbers are (0,1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, F). A convention has been adopted to identify a hexadecimal number. The two 
characters “0x” always precede a hexadecimal number. For example, the hexadecimal 
number 0x1F corresponds to the decimal value 31, and corresponds to 00011111 in the 
binary number system.  
 
The value 16 is equal to 24. Converting between binary and hexadecimal representation 
requires no computation, it can be done by inspection. The following table is the key to 
making these conversions. Converting a hexadecimal number to binary simply involves 
replacing every hexadecimal digit with the corresponding 4-bit code in the table below. 
For example, 0xA2F0 in hexadecimal corresponds to 1010001011110000 in binary. To 
convert a binary number to hexadecimal, start with the rightmost bits and break up the 
binary number into groups of 4-bits each. Then using the table below, replace every 4-bit 
code with the corresponding hexadecimal digit. For example, the 16-bit binary number 
1111011011100111 is equivalent to 0xF6E7. Notice that hexadecimal numbers that begin 
with the value 8 or above are negative numbers because in the corresponding binary 
representation the Most Significant Digit (MSD) is a one. 
 
Decimal Binary Hexadecimal 

0 0000 0x0
1 0001 0x1
2 0010 0x2
3 0011 0x3
4 0100 0x4
5 0101 0x5
6 0110 0x6
7 0111 0x7
8 1000 0x8
9 1001 0x9
10 1010 0xA 
11 1011 0xB 
12 1100 0xC 
13 1101 0xD 
14 1110 0xE 
15 1111 0xF 

Exercises
3.1 Convert the decimal number 35 to an 8-bit binary number. 
3.2 Convert the decimal number 32 to an 8-bit binary number. 
3.3 Using the double and add method convert 00010101 to a decimal number. 
3.4 Using the double and add method convert 00011001 to a decimal number. 
3.5 Explain why the Least Significant digit  of a binary number indicates if the number 

is odd or even. 
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3.6 Convert the binary number 00010101 to a hexadecimal number. 
3.7 Convert the binary number 00011001 to a hexadecimal number. 
3.8 Convert the hexadecimal number 0x15 to a decimal number. 
3.9 Convert the hexadecimal number 0x19 to a decimal number. 
3.10 Convert the decimal number -35 to an 8-bit two’s complement binary number. 
3.11 Convert the decimal number -32 to an 8-bit two’s complement binary number. 
3.12 Assuming the use of the two’s complement number system find the equivalent 

decimal values for the following 8-bit binary numbers: 
(a) 10000001 
(b) 11111111 
(c) 01010000 
(d) 11100000 
(e) 10000011 

3.13 Convert the base 8 number 204 to decimal 
3.14 Convert the base 7 number 204 to decimal 
3.15 Convert the base 6 number 204 to decimal 
3.16 Convert the base 5 number 204 to decimal 
3.17 Convert the base 10 number 81 to a base 9 number. 
3.18 For each row of the table below convert the given number to each of the other two 

bases, assuming the two’s complement number system is used. 
 

16 Bit Binary    Hexadecimal   Decimal  
1111111100111100 

0xFF88      
-128   

1111111111111010          
0x0011      

-25   

3.19 You are given the following two numbers in two’s complement representation. 
 Perform the binary addition. Did signed overflow occur? ____  Explain how you 

determined whether or not overflow occurred.  
 

01101110   
00011010

3.20 You are given the following two numbers in two’s complement representation. 
 Perform the binary subtraction. Did signed overflow occur? ____  Explain how you 

determined whether or not overflow occurred. 
 

11101000   
-00010011
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3.21 Sign extend the 2 digit hex number 0x88 to a 4 digit hex number.  0x                    .

3.22 The following subtract instruction is located at address 0x00012344.  What are the 
two possible values for the contents of the Program Counter (PC) register after the 
branch instruction has executed? 0x_____________ 0x ____________
This branch instruction is described in Appendix C. 

 
loop:  addi $t4, $t4, -8      

sub $t2, $t2, $t0       
bne $t4, $t2,loop     

 
3.23 You are given the following two 8-bit binary numbers in the two’s complement 

number system. What values do they represent in decimal? 
 

X = 10010100 = __________ Y = 00101100 = __________ 
 2 10   2  10 

Perform the following arithmetic operations on X and Y. Show your answers as 
 8-bit binary numbers in the two’s complement number system. To subtract Y from 
X, find the two’s complement of Y and add it to X. Indicate if overflow occurs in 
performing any of these operations. 

 X+Y   X-Y   Y-X 
 

10010100  10010100   00101100 
 00101100

Show a solution to the same arithmetic problems using the hexadecimal 
representations of  X and Y. 

3.24 The following code segment is stored in memory starting at memory location 
0x00012344.  What are the two possible values for the contents of the PC after the 
branch instruction has executed? In the comments field, add a pseudocode 
description for each instruction. 
0x    0x    

loop:  lw $t0, 0($a0) # 
addi $a0, $a0, 4 # 
andi $t1, $t0, 1 # 
beqz $t0, loop # 
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CHAPTER 4

PCSpim The MIPS Simulator 
My software never has bugs — 
 it just develops random features. 

4.1 Introduction
A simulator of the MIPS R2000/R3000 is available for free down-loading at: 
 

http://www.cs.wisc.edu/~larus/spim.html

There is a Unix version, and a Windows version called PCSpim.  The name SPIM is just 
MIPS spelled backward. Jim Larus at the University of Wisconsin developed the initial 
version of SPIM in 1990.  The major improvement of the latest version over previous 
versions is a feature to save the log file. After saving the log file, it can be opened using a 
text editor. Using the cut and paste tools, we can now print anything of interest related to 
the program that just ran. All of the examples presented in this book will be for the 
PCSpim Version. After down-loading PCSpim, the “Help File” should be reviewed. 
 
Morgan Kaufmann Publishers have generously provided an on line version of Appendix A 
from the textbook “Computer Organization and Design: The Hardware/Software 
Interface.” This is a more complete and up-to-date version of SPIM documentation than 
the one included with SPIM. This document provides a detailed explanation of the Unix 
version of SPIM. It is a suggested supplement to this textbook and is available at: 
 

http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf

4.2 Advantages of a Simulator
There are a number of advantages in using a simulator when first learning to program in 
assembly language. Number one, we can learn the language without having to buy a MIPS 
based computer. The simulator provides debugging features. We can single step through a 
program and watch the contents of the registers change as each instruction executes, and 
we can also look at the contents of memory as the instructions execute. We can set 
breakpoints. A programming mistake in a simulated environment will not cause the actual 
machine running the simulation to crash. A programming mistake in a simulated 
environment will usually result in a simulated exception, where a trap handler will print a 
message to help us identify what instruction caused the exception. 
 
This simulator does have some disadvantages. There is no linking loader phase. When 
developing an application to run on an actual MIPS processor we would assemble each 

http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf
http://www.ecst.csuchico.edu/~scoth/51a/hidpcspim.html
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code module separately. Then when the time comes to run the program, the loader would 
be used to relocate and load all the modules into memory and link them. Also this SPIM 
assembler/simulator does not provide a capability for users to define macros. 
 

4.3 The Big Picture
Here are the steps we go through to write and run a program using PCSpim. First we use a 
word processor such as Notepad to create an assembly language source program file. 
Save the file as “Text Only.” Launch PCSpim. In the “File” pull-down menu select 
“Open” or just click the first icon on the tool bar. Select “All Files” for the “Files of 
type.” Figure 4.1 below shows the bottom Messages window announcing the program has 
been successfully loaded. Three other windows are also displaying useful information. 
Specifically the Registers window, which is the top window, displays the contents of the 
MIPS registers. The next window down displays the contents of the Text Segment, and 
the window below that displays the Data Segment. To open the Console go to the 
Window pull down menu and select Console. 
 

Figure 4.1 
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In examining the contents of the Registers window at the top, you will find that all the 
registers initially containing zero except for the Program Counter (PC) and the Stack 
Pointer ($sp). A short sequence of instructions in the kernel of the operating system is 
always executed to launch a user program. That sequence of instructions starts at address 
0x00400000. 
 
To run the program, pull down the “Simulator” menu and select “Go” or just click on the 
third icon. The program that ran for this example “Sum of Integers” is shown in Section 
2.2. For this example, we ran and responded with values every time we were prompted to 
“Please Input a value.” Analysis of the code will reveal the program will terminate when 
the value zero is typed in. When the program terminates, it would be appropriate to “Save 
Log File.” This can be done by clicking the second icon on the tool bar or selecting this 
option under the “File” pull down menu.  
 

Figure 4.2 
 
An input value for N greater than 65535 will result in a computed value that exceeds the 
range for a 32-bit representation. The hardware contains a circuit to detect when overflow 
occurs, and an exception is generated when overflow is detected. One of the options under 
“Simulation” menu is “Break.” If a program ever gets into an infinite loop, use this option 
to stop the simulation. Always “Reload” the program after the program has been aborted 
using the “Break” option. 
 
An examination of the “Registers” window after the program has run to completion 
shows registers $v0 and  $t0 both contain the value ten (0x0000000a).  Can you explain 
why?  It is especially instructive to use the “Single Step” option to run the program and to 
watch the contents of these registers change as each instruction is executed. In “Single 
Step”(function Key F10) mode, the next instruction to be executed will be highlighted in 
the “Text Segment” window.   
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4.4 Analyzing the Text Segment
An examination of the following “Text Segment” is especially enlightening. This “Text 
Segment” taken from the Log File corresponds to the program in Section 2.2. The first 
column is the hexadecimal address of the memory location where each instruction was 
stored into memory. The second column shows how each assembly language instruction is 
encoded in machine language. The last column shows the original assembly language 
code.  
 

Address     Machine Language Original Code
[0x00400020]        0x34020004  ori $2, $0, 4                     ; 34: li  $v0, 4 
[0x00400024]        0x3c041001  lui $4, 4097 [prompt]       ; 35: la  $a0, prompt   
[0x00400028]        0x0000000c  syscall                               ; 36: syscall 
[0x0040002c]        0x34020005  ori $2, $0, 5                     ; 38: li   $v0, 5 
[0x00400030]        0x0000000c  syscall                           ; 39: syscall 
[0x00400034]        0x1840000d  blez $2 52 [end-0x00400034]  ; 41: blez  $v0,  end 
[0x00400038]        0x34080000  ori $8, $0, 0                     ; 42: li      $t0, 0 
[0x0040003c]        0x01024020  add $8, $8, $2                    ; 44: add   $t0, $t0, $v0 
[0x00400040]        0x2042ffff     addi $2, $2, -1                  ; 45: addi  $v0, $v0, -1 
[0x00400044]        0x14403ffe   bne $2, $0, -8 [loop-0x00400044] ; 46: bnez  $v0, end 
[0x00400048]        0x34020004  ori $2, $0, 4                     ; 47: li   $v0, 4 
[0x0040004c]        0x3c011001  lui $1, 4097 [result]             ; 48: la  $a0, result 
[0x00400050]        0x34240022  ori $4, $1, 34 [result] 
[0x00400054]        0x0000000c  syscall                 ; 49: syscall 
[0x00400058]        0x34020001  ori $2, $0, 1    ; 51: li   $v0, 1 
[0x0040005c]        0x00082021  addu $4, $0, $8                   ; 52: move  $a0,  $t0 
[0x00400060]        0x0000000c  syscall                           ; 53: syscall 
[0x00400064]        0x04013fef   bgez $0 -68 [main-0x00400064]    ; 54: b  main 
[0x00400068]        0x34020004  ori $2, $0, 4                     ; 56: li   $v0, 4 
[0x0040006c]        0x3c011001  lui $1, 4097 [bye]                ; 57: la   $a0, bye 
[0x00400070]        0x3424004d  ori $4, $1, 77 [bye] 
[0x00400074]        0x0000000c  syscall                           ; 58: syscall 
[0x00400078]        0x3402000a  ori $2, $0, 10                    ; 60: li   $v0, 10 
[0x0040007c]        0x0000000c  syscall                           ; 61: syscall 
 
The assembler is the program that translates assembly language instructions to machine 
language instructions. To appreciate what this translation process entails, every student 
should translate a few assembly language instructions to machine language instructions. 
We will now demonstrate this translation process. We will be using the information in 
Appendix C to verify that 0x3402000a is the correct machine language encoding of the 
instruction “ori $2, $0, 10.”, which is the next to last instruction in the  “Text Segment” 
above, located at memory location [0x00400078].  
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In Appendix C we are shown how this instruction is encoded in binary. 
 
ori Rt, Rs, Imm # RF[Rt] = RF[Rs]  OR  Imm 
 

Op-Code  Rs Rt  Imm   
001101ssssstttttiiiiiiiiiiiiiiii

The macro instruction “load Immediate” (li    $v0, 10) was the original assembly language 
instruction. Looking in Appendix D we find that the actual instruction  (ori $2, $0, 10) is 
used to accomplish the task of loading register $v0 with the value ten. In Figure 1.2 we 
find that register number “2” corresponds to the register with the name $v0. So now all we 
have to do is fill in the binary encoding for all the specified fields of the instruction. 
Specifically the immediate value is ten, which is “0000000000001010,” Rt is “00010,” 
and Rs is “00000.” The final step involves translating the 32-bit binary value to 
hexadecimal. The alternating shading is helpful for distinguishing each 4-bit field. 
 

Op-Code  Rs Rt  Imm   
00110100000000100000000000001010

3 4 0 2 0 0 0 a
Use the information in Appendix C to verify that 0x2042ffff is the correct machine 
language encoding of the instruction “addi    $v0, $v0, -1.”  This instruction is located at 
memory location [0x00400040]. Notice that the instructions (li) and (la) in the original 
code are macro instructions. Looking at the middle column we see how each macro 
instruction was replaced with one or more actual MIPS instructions. 
 
4.5 Analyzing the Data Segment
Within the data segment of this example program, the following three ASCII strings were 
defined using the assembler directive “.asciiz.”

.data 
prompt: .asciiz “\n   Please Input a value for N = ” 
result:  .asciiz “   The sum of the integers from 1 to N is ” 
bye:  .asciiz    “ **** Adios Amigo – Have a good day ****” 
 
This directive tells the assembler to place the ASCII codes corresponding to the strings 
within quotes into memory sequentially one after another. Notice the “z” at the end of the 
directive indicates that a null-terminated string should be created. The ASCII null 
character is an 8-bit binary value zero. (See Appendix B) The Print String system utility 
stops printing when it finds a null character. Special characters in strings follow 
the C convention: 
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• newline \n 
• tab   \t 
• quote  \" 

 
To begin this analysis, let’s take the following characters,  “Please”. Using Appendix B, 
look up the ASCII code for each of the characters: 
 
P –> 0x50 l –> 0x6c e –> 0x65 a –> 0x61 s –> 0x73 e –> 0x65 
The operating system has allocated space in memory for our Data Segment to begin at 
address 0x10010000. Locating this ASCII code sequence is an interesting exercise, 
complicated by the fact that Intel processors store characters within words in reverse 
order, and PCSpim is running on an Intel-based platform. Below we have highlighted the 
location of these characters within the data segment of memory. Can you find the null 
character that terminates the first string?  
 

a e l P e s
[0x10010000]                        0x2020200a  0x61656c50 0x49206573 0x7475706e 
[0x10010010]                        0x76206120  0x65756c61  0x726f6620  0x3d204e20 
[0x10010020]                        0x20200020  0x65685420  0x6d757320  0x20666f20 
[0x10010030]                        0x20656874  0x65746e69  0x73726567  0x6f726620 
[0x10010040]                        0x2031206d  0x4e206f74  0x20736920  0x20200a00 
 

4.6 System I/O
The developers of the SPIM simulator wrote primitive decimal input/output functions. 
Access to these functions is accomplished by generating a software exception. The MIPS 
instruction a programmer uses to invoke a software exception is "syscall." There are ten 
different services provided. In your programs, you specify what service you want to 
perform by loading register $v0 with a value from 1 to 10. The table below describes each 
system service.  We will be using only those services that are shown highlighted.  
 
Service Code in $v0 Arguments    Results  
Print an Integer  1 $a0 = Integer Value to be Printed 
Print Float   2 
Print Double  3 
Print String  4 $a0 = Address of String in Memory 
Read an Integer in 5 Integer Returned in $v0 
(from the keyboard)    
Read Float  6 
Read Double  7 
Read a String in 8 $a0 = Address of Input Buffer in Memory  
(from the keyboard)  $a1 = Length of Buffer (n)
Sbrk   9 $a0 = amount    Address in $v0   
Exit   10
4.7 Deficiencies of the System I/O Services
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These primitive I/O functions provided by the developers of SPIM have some undesirable 
characteristics:  
• The decimal output function prints left justified.  In most situations we would rather 

see the numbers printed right justified.   
• The decimal input function always returns some value even if the series of keystrokes 

from the keyboard does not correctly represent a decimal number. You can verify this 
by running the following program and typing the following strings, each of which does 
not correctly represent a decimal integer value or the value exceeds the range that can 
be represented as a 32-bit binary value. 

 
2.9999999 
1 9
3A 
4-2 
-4+2 
ABCD 
2,147,463,647 
2147463648 
-2,147,463,648 
-2147463649 

.data 
prompt: .asciiz “\n   Please Input a value” 
bye:  .asciiz “\n  **** Adios Amigo - Have a good day ****” 

.globl main 

.text 
main:  

li $v0, 4  # system call code for Print String 
la $a0, prompt  # load address of prompt into $a0 
syscall   # print the prompt message 

li $v0, 5  # system call code for Read Integer 
syscall   # reads the value into $v0 
beqz $v0,  end  # branch to end if  $v0  =  0  
move $a0, $v0 
li $v0, 1  # system call code for Print Integer 
syscall   # print  
b main  # branch to main 

end:  li $v0, 4  # system call code for Print String 
la $a0, bye  # load address of msg. into $a0 
syscall   # print the string 

li $v0, 10  # terminate program run and 
syscall   # return control to  system 
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Exercises
4.1 Translate the following assembly language instructions to their corresponding 

machine language codes as they would be represented in hexadecimal.  
(Hint – Refer to Appendix C and Appendix D.) 
loop: addu  $a0, $0, $t0 

ori  $v0, $0, 4 
syscall 
addi $t0, $t0, -1 
bnez $t0, loop 
andi $s0, $s7, 0xffc0 
or $a0, $t7, $s0 
sb $a0, 4($s6) 
srl $s7, $s7, 4 

 
4.2 What is the character string corresponding to the following ASCII codes? 

0x2a2a2a2a  0x69644120  0x4120736f  0x6f67696d  0x48202d20  0x20657661 
(Hint – Remember that  for simulations running on Intel–based platforms, the 
characters are stored in reverse order within each word.) 



39

CHAPTER 5

Algorithm Development 
How would you describe Al Gore playing the drums? 
Algorithm. 

5.1 Introduction
Everyone knows exercise is the key to developing stronger muscles and muscle tone. 
Some students pay a good deal of money on sport club memberships, just so they can use 
the exercise equipment. The remaining chapters of this book provide a wealth of exercises 
students can use to strengthen their “mental muscle.” Challenging yourself with these 
exercises is essential to becoming an efficient, productive assembly language programmer. 
Discussion and collaboration with other students can be a valuable component in 
strengthening your mental muscle. You should discuss the programming assignments, 
general strategies, or algorithms with other people, but do not collaborate in the detail 
development or actually writing of programs. The copying of programs (entirely or in 
part) is considered plagiarism. Obviously, if you only watch people workout at the sport 
club, you will not improve your own physical condition. 
 
Students using this book will be presented with many challenging assembly language 
programming exercises. It is suggested each student should initially attempt to 
individually develop a pseudocode solution to each exercise. Next, the students should 
show each other their pseudocode, and discuss ways to refine their algorithms to make 
them more efficient in terms of space and time. 
 
The final step is to translate the pseudocode to assembly language code, and to calculate 
performance indexes for their solutions. The two performance indexes are: 
 a. The number of words of assembly language code. (space) 
 b. The number of clock cycles required to execute the code. (time) 
 
5.2 Instructions that Perform Logical Operations
The logical operators implemented as MIPS instructions are: AND, NOR, OR, and 
EXCLUSIVE-OR (XOR). These instructions are extremely useful for manipulating, 
extracting and inserting specifically selected bits within a 32-bit word. Programmers who 
really understand these instructions have a significant advantage in developing code with 
superior performance indexes. For those unfamiliar with these bit-wise logical operators, 
the following truth table defines each of the operators. In the table, x and y represent two 
Boolean variables, and the results of each logical operator appear in the corresponding 
column. Understand that these logical operations are performed upon the corresponding 
bits in two source registers, with each containing 32 bits, and the resulting 32 bits are 
stored in a destination register. The truth table describes four possible combinations of two 
variables, and defines the corresponding results produced by the logical operators. 
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Looking at the truth table for the AND operation, we find the only case where we get a 
one (1) for a result is when x and y are both one (1). For the OR operation, we get a one 
for a result when either x or y is a one (1). The operator NOR stands for NOT-OR, and we 
notice the row in the truth table that defines the NOR operation is simply the complement 
of the row describing the OR operation. For the EXCLUSIVE-OR, we get a one in the 
result only when the x and y input variables are different. (Not the same) 
 

Input x 0 0 1 1 
Input y 0 1 0 1 

x AND y 0 0 0 1 
x OR y 0 1 1 1 
x NOR y 1 0 0 0 
x XOR y 0 1 1 0 

We will refer to the Least Significant Bit (LSB) in a word as bit 0, and we will refer to the 
Most Significant Bit (MSB) as bit 31. Note that if a logical operator has a 16-bit 
immediate operand, the hardware automatically zero extends the immediate value to form 
a 32-bit operand. One of the operands for a logical operator is usually referred to as a 
“mask.” The bit pattern within a mask is used to select which fields within the other 
register we wish to manipulate, or extract information from. For these examples, assume 
the following masks are stored in registers $t8, and $t9: 
 
$t8 = 0xffffffc0 = 111111111111111111111111111111111111111111000000

2
$t9 = 0x0000003f = 000000000000000000000000000000000000000000111111

2
To move a copy of  $t0 into $t1 with the lower 6 bits cleared to zero, the instruction to 
accomplish this would be: 

and $t1, $t0, $t8  # $t1 = $t0 & $t8 
In this case, anywhere there is a zero in the mask, we get zero in $t0, and anywhere there 
is a one in the mask, we get a copy of $t0 in $t1. 
 
To move a copy of  $t0 into $t1 with the lower 6 bits set to one, the instruction to 
accomplish this would be: 

or $t1, $t0, $t9  # $t1 = $t0 | $t9 
In this case, anywhere there is a one in the mask, we get a one in $t1, and anywhere there 
is a zero in the mask, we get a copy of $t0 in $t1. 
 
Suppose we want to complement the lower 6 bits of register $t0, but leave all the other 
bits unchanged. The instruction to accomplish this would be: 

xor $t0, $t0, $t9   # $t1 = $t0 ^ $t9      
Anywhere there is a one (1) in the mask, we get a complement of the original value in $t0. 
Anywhere there is a zero (0) in the mask, we get a copy of the corresponding bits in $t0. 
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Suppose we want to know if the values in two registers $s0 and $s1 have the same sign. 
The instructions to accomplish this would be: 

xor $t0, $s0, $s1  # The Most Significant Bit (MSB) of $t0 will be 
# set to a “1” if $s0 & $s1 have different signs 

bgez $t0, same_sign # Branch if MSD of $t0 is a zero 
 
Suppose we want to swap the contents of  registers $s0 and $s1. The instructions to 
accomplish this could be: 

xor $t0, $s0, $s1  # Determine which bits are different 
move $s0, $s1  # Move a copy of s1 into s0 
xor $s1, $s0, $t0  # Get a copy of s0 but complement those bits 

# that were different  
 
How would you use logical instructions to determine if the value in a register is an odd 
number? 
 

5.3 Instructions that Perform Shift Operations
The MIPS architecture has instructions to shift the bits in a register either right or left. The 
logical shifts always shift in zeros. In the case of the shift right, there is a shift right logical 
(srl) instruction, and an shift right arithmetic (sra) instruction. In the case of the shift right 
arithmetic, a copy of the most significant bit is always maintained and shifted right to 
insure the sign of the number does not change. Logical shifts always shift in zeros. 
 
Suppose $a0 contains the value –32 (11111111111111111111111111100000) and we 
want to divide $a0 by four (4). Shifting $a0 right arithmetic 2 bits will accomplish the 
task. The result is –8 (11111111111111111111111111111000). Note that 22 is equal to 
four (4). So in the case of dividing by a value that is some power of two (2), division can 
be accomplished in one clock cycle with the shift right arithmetic instruction. In the case 
of odd negative numbers, this is not a truncated division. Instead, it rounds down the next 
more negative integer number. For example, take the binary value equivalent to –9 and do 
an arithmetic shift right by one bit and the result will be –5. If truncated division of an odd 
negative number is required, it can still be accomplished with the following instructions. 
 

sub $a0, $0, $a0  # Complement the number to make it positive 
sra $a0, $a0, 1  # Shift Right by 1 is Equivalent to dividing by 2 
sub $a0, $0, $a0  # Complement the number back to negative  

 
Macro instructions are provided to rotate the bits in a register either right or left. (See 
Appendix D) With these instructions, any bits shifted out of one end of the register will be 
shifted into the other end of the register. These macro instructions require at least 3 clock 
cycles to execute. 
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5.4 Modular Program Design and Documentation
The importance of good program design and documentation can not be stressed too much. 
Good documentation is valuable for student programmers as well as professional 
programmers. Over time it is not unusual for the functional requirements of a code module 
to change; which will require modifications be made to previously written code. Often the 
programmer assigned the task of modifying a code module is not the same person who 
created the original version. Good documentation will save programmers hours of time in 
analyzing how the existing code accomplishes its functionality, and will expedite the 
necessary modifications to the code. Every organization will have its own documentation 
standards. The following pages provide a suggested minimal documentation standard. The 
main components of this documentation standard are: 

• Functional Description 
• Algorithmic Description 
• Register Usage Table 
• In Line Documentation 

 
A functional description will provide the information anyone needs to know if they are 
searching for a function that would be useful is solving some larger programming 
assignment. The functional description only describes what the function does, not how it is 
done. The functional description must explain how arguments are passed to the function 
and how results are returned (if any). The following are example functional descriptions 
for the classical I/O functions that are described in more detail later in this chapter: 
 
Hexout($a0: value)
A 32-bit binary value is passed to the function in register $a0 and the hexadecimal 
equivalent is printed out right justified. 
 
Decout($a0: value)
A 32-bit binary value is passed to the function in register $a0 and the decimal equivalent 
is printed out right justified. 
 
Decin($v0: value, $v1: status)
Reads a string of decimal digits from the keyboard and returns the 32-bit binary equivalent 
in register $v0. If the string does not correctly represent a decimal number error status 
value “1” is returned in register $v1 otherwise the status value returned is “0” for a valid 
decimal number. 
 
Hexin (&string, value):
Scans a string of ASCII characters representing a hexadecimal number and returns the 32-
bit binary equivalent value on the stack at Mem($sp+8). A pointer to the string is passed to 
the function on the stack at Mem($sp+4). Upon return the pointer in (Mem$sp+4) will be 
pointing to the byte that follows the last hexadecimal digit in the string. 
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Pseudocode explains how the function is implemented. Anyone assigned the task of 
modifying the code will be extremely interested in the logical structure of the existing 
code. The logical structure of the code is more readily understood using a high-level 
notation. The use of high-level pseudocode is valuable during the initial development of a 
code module and will be especially helpful to the maintenance programmer. The original 
programmer usually is not the individual who will be making modifications or 
improvements to the code as the years pass. Pseudocode facilitates collaboration in group 
projects. Pseudocode facilitates debugging. 
 
When developing code in a high-level language the use of descriptive variable names is 
extremely valuable for documentation purposes.  In the case of the MIPS architecture, all 
of the data manipulation instructions and the control instructions require their operands be 
in the register file. A MIPS assembly language programmer must specify within each 
instruction which processor registers are going to be utilized. For example, we may have a 
value in register $t2 corresponding to size, and a value in register $t3 corresponding to 
count. When using pseudocode to document an assembly language program, we must use 
the names of the registers we intend to use in the assembly language code. We use register 
names in the pseudocode so that the translation to assembly language code will be an easy 
process to perform and because we want documentation that describes how the MIPS 
architecture actually executes the algorithm. Unless we identify the registers being used, 
the pseudocode is quite limited in terms of deriving the corresponding assembly language 
program or documenting the assembly language code.  
 
The use of a cross-reference table that defines what each processor register is being used 
for within the algorithm will bridge the gap between a descriptive variable name and the 
corresponding MIPS register. (For example: $t2 = Size, $t3 = Count).  Below you will 
find an example header for a main program that can be used for student programming 
assignments. Notice the header has a “Register Usage” cross-reference table. 
 

################### Example Main Program Header ################### 
# Program # 1 : <descriptive name> Programmer : < your name> 
# Due Date    : mm dd, 2001  Course: CSCI 51a 
# Last Modified : mm dd hh:mm Section:  
################################################################ 
# Overall Program Functional Description: 
#
################################################################ 
# Register Usage in Main: 
# s0 = Address of ... 
# s4 = value of ...    
################################################################ 
# Pseudocode Description: 
#
################################################################   
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Below you will find an example header for a function. Each MIPS assembly language 
function should be immediately proceeded by a header such as the one shown below.  
 
#################### Example Function Header  ##################### 
# Function Name: 
# Last Modified : month day hour: minute  
################################################################ 
# Functional Description: 
#
################################################################ 
# Explain what parameters are passed  to the function, and how: 
# Mem(sp + 4) = Value to be printed. 
#
# Explain what values are returned by the procedure, and how:   
# Mem(sp + 4) = Binary value returned on the stack 
# Mem(sp + 8) = Status value returned on the stack 
# 0 = successful, otherwise error 
#
# Example Calling Sequence : 
#
# <show moves of parameters to registers or the stack> 
# jal  xxxxxx 
# <returns here with . . . 
############################################################### 
# Register Usage in Function: 
# t0 = Address of ... 
# t4 = value of ...    
############################################################### 
# Algorithmic Description in Pseudocode: 
#
############################################################### 
 
The use of in-line documentation can be quite helpful to identify what each block of 
assembly language code is accomplishing. Throughout this book there are a multitude of 
examples of in-line documentation. The purpose of the in-line documentation is to provide 
a phrase that describes what is logically being accomplished. For example: 
 

andi $t8, $s0, 1 # Extract the Least Significant Bit (LSB) 
beqz $t8 even # If LSB is a zero Branch to even 
addi $s1, $s1, 1 # Increment the odd count in s1 

even: 
 
On the next three pages you will find a complete program consisting of a main program 
and a function module. Using the documentation, you should be able to follow the logic of 
what is being accomplished and how its being accomplished.  
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################### Example Main Program Header ################### 
# Program # 1 : <descriptive name> Programmer : < your name> 
# Due Date    : mm dd, 2001  Course: CSCI 51a 
# Last Modified : mm dd hh:mm Section:  
################################################################ 
# Overall Program Functional Description: 
# This main line program is used to test the function “sum.” 
# After calling the function, results are printed.   
################################################################ 
# Register Usage in Main: 
# $a0:  used to pass the  address of an array to the function 
# $a1: used to pass the length parameter  “N” to the function    
################################################################ 
# Pseudocode Description: 
#
################################################################ 

.data 
array:  .word        -4, 5, 8, -1 
msg1:  .asciiz       "\n The sum of the positive values = " 
msg2:  .asciiz       "\n The sum of the negative values = " 

.globl        main 

.text 
main:  

li $v0, 4 # system call code for print_str 
la $a0, msg1 # load address of msg1. into $a0 
syscall  # print the string 

la $a0, array # Initialize address Parameter 
li $a1, 4  # Initialize length Parameter 
jal sum # Call sum 

move $a0, $v0 # move value to be printed to $a0 
li $v0, 1 # system call code for print_int   
syscall  # print sum of Pos: 

li $v0, 4 # system call code for print_str 
la $a0, msg2 # load address of msg2. into $a0 
syscall  # print the string 

li $v0, 1 # system call code for print_int 
move $a0, $v1 # move value to be printed to $a0  
syscall  # print sum of neg 

li $v0, 10 # terminate program run and 
syscall  # return control to  system 
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#################### Example Function Header  ##################### 
# Function Name: Sum(&X, N, SP, SN) 
# Last Modified : month day hour: minute  
################################################################ 
# Functional Description: 
# This function will find the sum of the positive and the sum of the negative  
# values in an array X of length N. 
#
# “X" is the address of an array passed through $a0. 
# "N" is the length of the array passed through $a1. 
# The function returns two values: 
# (1) Sum of the positive elements in the array passed  through $v0. 
# (2) Sum of the negative elements in the array passed through $v1. 
#
################################################################ 
# Example Calling Sequence : 
# la $a0, array 
# li $a1, 4 
# jal   sum 
# move $a0, $v0 
#
############################################################### 
# Register Usage in Function: 
# a0 = address pointer into the array 
# a1 = loop counter. (counts down to zero)  
# t0 = a value read from the array  
#
############################################################### 
# Algorithmic Description in Pseudocode: 
# v0 = 0;
# v1 = 0;
# while( a1 > 0 )do 
# {
# a1 = a1 - 1; 
# t0 = Mem(a0); 
# a0 = a0 + 4; 
# If (t0 > 0) then  
# v0 =v0 + t0; 
# else  
# v1 = v1 + t0; 
# }
# Return 
#
###################################################### 
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sum:  li $v0, 0    
li $v1, 0   # Initialize v0 and v1 to zero 

loop: 
blez $a1, retzz  # If (a1 <= 0) Branch to Return 
addi $a1, $a1, -1  # Decrement loop count 
lw $t0, 0($a0)  # Get a value from the array 
addi $a0, $a0, 4  # Increment array pointer to next word 
bltz $t0,  negg  # If  value is negative Branch to negg 
add $v0, $v0, $t0  # Add to the positive sum 
b loop   # Branch around the next two instructions 

negg:  
add $v1, $v1, $t0  # Add to the negative sum 
b loop   # Branch to loop 

retzz:  jr $ra   # Return 

5.5 A Function to Print Values in Hexadecimal Representation 
To display anything on the monitor, the ASCII codes for the desired characters must first 
be placed into an array of bytes in memory (an output buffer), and then one uses a system 
call to print the string (syscall 4). The specific set of instructions used to print a string 
appear below:  

li           $v0, 4 # system call code for Print a String 
la $a0, buffer # Load address of output buffer into $a0 
syscall 

The syscall will send a string of characters to the display starting at the memory location 
symbolically referred to by “buffer.”  The string must contain a null character (0x00) to 
indicate where the string ends.  It is the programmer’s responsibility to place the null 
character at the proper location in memory to indicate where the string ends.   
 
Notice this particular syscall has two parameters passed to it. The value four (4) passed to 
the system in register $v0 indicates the programmer wants to invoke a print string system 
service. The value in register $a0 is the address of the memory location where the first 
character of the string is located. 
 
Since there is no system service to print values in hexadecimal representation, it would 
appear this should be one of the first functions we should develop. The logical instructions 
and the shift instruction come in handy for this algorithm. Recall that a 32-bit binary 
number can be represented with eight hexadecimal digits. Conceptually, then we need to 
iterate eight times. Within each iteration, we extract the lower 4 bits from the binary 
number and then shift the binary number to the right, by 4 bits. We examine the 4 bits that 
were extracted, and if the value is less than ten, we add the appropriate bias to create the 
corresponding ASCII code. If the value is ten or greater, then a different bias must be 
added to obtain the appropriate ASCII code for the correct hexadecimal digit in the range 
from A through F. Once the ASCII code has been computed, it must be placed into the 
output buffer, starting at the right most digit position and working to the left. 
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After the eight ASCII characters have been placed in the buffer, it is necessary to place 
three additional characters at the beginning of the buffer. Specifically, the ASCII code for 
a space (0x20), the ASCII code for a zero (0x30), and the ASCII code for an “x” (0x78). 
Finally the contents of the buffer is printed as an ASCII string, and then a return is 
executed. 
 

5.6 A Function to Read Values in Hexadecimal Representation 
To input characters from the keyboard one uses a system service to read a string  
(syscall 8) the specific set of instructions used to read a string appear below:  
 

li           $v0, 8 # system call code for Read a String 
la $a0, buffer # load address of  input buffer into $a0 
li $a1, 60 # Length of buffer 
syscall 

 
The read string system service will monitor the keyboard and as the keys are pressed, the 
corresponding ASCII codes will be placed sequentially into the input buffer in memory. 
When the “Enter” (new-line) key is depressed, the corresponding ASCII code (0x0a) is 
stored in the buffer followed by the null code (0x00), and control is returned to the user 
program. 
 
Notice this particular syscall has three parameters passed to it: The value eight (8) passed 
to the system in registered $v0 indicates the programmer wants to invoke a read string 
system service, the value in registered $a0 specifies the address of input buffer in memory, 
and the value in register $a1 specifies the length of the buffer. To allocate space in 
memory for a 60-character buffer, the following assembler directive can be used: 
 

.data           
buffer:  .space 60           
 
Since there is no system service to read in values in hexadecimal representation, this could 
be a valuable function to develop. In general, this algorithm involves reading in a string of 
characters from the keyboard into a buffer, and then scanning through the string of 
characters, converting each ASCII code to the corresponding 4-bit value. The process is 
essentially the inverse of the hexadecimal output function. When each new valid 
hexadecimal ASCII code is found, we shift our accumulator register left four bits and then 
insert the new 4-bit code into the accumulator. If more than 8 hexadecimal digits are 
found in the input string, the number is invalid, and status information should be returned 
to indicate an error condition. Any invalid characters in the string, such as “G,” would also 
be an error condition. A properly specified hexadecimal number should be preceded with 
the string “0x.” 
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5.7 A Function to Print Decimal Values Right Justified
Here, we will discuss the algorithm to print, right justified, the decimal equivalent of a 
binary number. The input to this function is a 32-bit binary number. The output will be a 
string of printed characters on the monitor. When we implement this code we have to 
determine if the input binary number is a negative value. If the number is negative, the 
ASCII code for a minus sign must be placed in the output buffer immediately to the left of 
the most significant decimal digit. The maximum number of decimal digits that will be 
generated is ten. The output buffer must be at least thirteen characters in length. 
Specifically, we need a null character at the end of the buffer, possibly ten ASCII codes 
for ten decimal digits, possibly a minus sign, and at least one leading space character. For 
a small positive value, such as nine, there will be eleven leading space characters to insure 
that the number appears right justified within a field of twelve characters.  
 
The heart of this algorithm can be a “do while” control structure. Within each iteration, we  
divide the number by ten. From the remainder, we derive the next ASCII code for the 
equivalent decimal representation. The quotient becomes the number for the next iteration. 
The decimal digits are derived one at a time from the least significant digit working 
toward the most significant digit on each iteration. While the number is not equal to zero, 
we continue to iterate. When the quotient finally becomes zero, it is time to check if the 
number should be preceded by a minus sign, and then all remaining leading character 
positions are filled with the ASCII code for space. Finally, we use the system service to 
print the ASCII string in the output buffer. 
 
5.8 A Function to Read Decimal Values and Detect Errors
As was pointed out at the end of Chapter 4, the system service to read an integer has no 
capability of informing the user if the input string does not properly represent a decimal 
number. An improved Integer Read function should return status information to the calling 
program so that the user can be prompted by the calling program to re-enter the value 
correctly when an input error is detected. 
 
Basically, this new input function will use SYSCALL (8) to read a string of ASCII 
characters from the keyboard into a buffer, and then return the equivalent 32-bit binary 
integer value. If the input string can be correctly interpreted as a decimal integer, then a 
value of zero is returned in register $v1. (The status flag) If the input string cannot be 
correctly interpreted, then a value of “1” is returned in register $v1. In other words, $v1 
will be a flag to indicate if the input value is incorrectly specified. 
 
This algorithm consists of three phases. In the first phase, the string is scanned looking for 
the first digit of the number with the possibility that the Most Significant Digit (MSD) 
may be preceded by a minus sign. The second phase involves scanning through the 
following string of characters, and extracting each decimal digit by subtracting out the 
ASCII bias. When each new decimal digit is found, we multiply our current accumulated 
value by ten and add the most recently extracted decimal value to the accumulator. If 
overflow occurs while performing this arithmetic, then an error has occurred and 
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appropriate status information should be returned. Detection of overflow must be 
accomplished by this function. An overflow exception must be avoided. Any invalid 
characters in the string would be an error condition. The second phase ends when a space 
is found or when a new line character is found. At this time, it would be appropriate to 
take the two’s complement of the accumulated value, if the number has been preceded by 
a minus sign.  In the final phase, we scan to the end of the buffer to verify the only 
remaining characters in the buffer are spaces.  
 

Exercises
5.1 Write a MIPS  assembly language program to find the sum of the first 100 words of data 

in the memory data segment with the label “chico.”  Store the resulting sum in the next 
memory location beyond the end of the array “chico.” 

 
5.2 Write a MIPS assembly language program to transfer a block of 100 words starting at 

memory location “SRC” to another area of memory beginning at memory location 
“DEST.”  

 
5.3 Write a MIPS function called “ABS” that accepts an integer word in register $a0 and 

returns its absolute value in $a0. Also, show an example code segment that calls the ABS 
function twice, to test the function for two different input values. 

 
5.4 Write a function PENO (&X, N, SP, SN) that will find the sum of the positive even values 

and negative odd values in an array X of length N. "X" the address of an array passed 
through $a0. "N" is the length of the array passed through $a1. The procedure should 
return two values, 

 (1) The sum of all the positive even elements in the array passed back through $v0. 
 (2) The sum of all the negative odd elements in the array passed back through $v1. 
 
5.5 Write a function SUM(N) to find the sum of the integers from 1 to N, making use 

the multiplication and shifting operations.  The value N will be passed to the 
procedure in $a0 and the result will be returned in the $v0 register. 
 
Write a MIPS assembly language main program that will call the SUM function 
five times each time passing a different value to the function for N, and then 
printing the results. The values for N are defined below: 

 N: .word    9, 10, 32666, 32777, 654321 
 
5.6 Write a function FIB(N, &array) to store the first N elements of the Fibonacci 

sequence into an array in memory.  The value N is passed in $a0, and the address 
of the array is passed in register $a1. The first few numbers of the Fibonacci 
sequence are:  1, 1, 2, 3, 5, 8, 13, ............ 
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5.7 Write a function that will receive 3 integer words in registers $a0, $a1, & $a2, and 
will return them in ordered form with the minimum value in $a0 and the maximum 
value in $a2. 

 
5.8 Write the complete assembly language program, including data declarations, that 

corresponds to the following C code fragment. Make use of the fact that multiplication and 
division by powers of  2 can be performed most efficiently by shifting. 

 
int main() 

 { int  K,  Y ; 
 int  Z[50] ; 
 Y = 56

K = 20
Z[K] = Y  -  16  *  ( K / 4  + 210) ; 

 }

5.9 MaxMin($a0: &X, $a1: N, $v0: Min, $v1: Max)
Write a function to search through an array “X” of “N” words to find the minimum 
and maximum values. The address of the array will be passed to the procedure 
using register $a0, and the number of words in the array will be passed in register 
$a1.  The minimum and maximum values are returned in registers $v0, and $v1. 

 
5.10 SumMain($a0: &X,  $a1: N, $v0: Sum)

Write a function to find the sum of the main diagonal elements in a two 
dimensional N by N array of 32-bit words. The address of the array and the size N 
are passed to the procedure in registers $a0 and $a1 respectively. The result is 
returned in $v0. The values in registers $a0 and $a1 should not be modified by this 
procedure. Calculate the number of clock cycles required to execute your 
algorithm, assuming N=4. 

 
5.11 Det($a0: &X, $v0: D)

Write a function to find the determinant of a two by two matrix (array). The 
address of the array is passed to the function in registers $a0 and the result is 
returned in $v0. The value in register $a0 should not be modified by this function. 
Calculate the number of clock cycles required to execute your algorithm.  

 
5.12 Write a function that accepts a binary value in register $a0 and returns a value in 

$v0 corresponding to the number of one’s in $a0.that in the binary number 
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5.13 Translate the following pseudocode expression to MIPS assembly language code. 
Include code to insure that there is no array bounds violation when the store word 
(sw) instruction is executed. Note that the array “zap” is an array containing 50 
words, thus the value in register $a0 must be in the range from 0 to 196. Include 
code to insure that the value in register $a0 is a word address. If an array bounds 
violation is detected or the value in register $a0 is not a word address then branch 
to the label “Error.” 

 
.data 

 zap: .space 200 
 .text 
 

…??? . . 
 

zap[$a0] = $s0; 
 

5.14 Write a function to search through an array “X” of  “N” words to find how many 
of the values are evenly divisible by four. The address of the array will be passed to the 
function using register $a0, and the number of words in the array will be passed in register 
$a1. Return the results in register $v0.
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CHAPTER 6

Function Calls Using the Stack 
What do you call the cabs lined up at the Dallas airport? 
The yellow rows of taxis. 

6.1 Introduction
One of the objectives of this book is to stress the fact that significant program 
development is a teamwork effort. Unless everyone in a programming team adheres to 
the same convention for passing arguments (parameters), the programming project will 
degenerate into chaos. Students using this textbook are expected to use the convention 
defined below. If everyone uses the same convention, then it should be possible to run a 
program using randomly select functions written by different students in the class. 
 
6.2 The Stack Segment in Memory
Every program has three segments of memory assigned to it by the operating system 
when the program is loaded into memory by the linking loader. In general, the 
programmer has no control over what locations are assigned, and usually the programmer 
does not care. There is the “text” segment where the machine language code is stored, the 
“data” segment where space is allocated for global constants and variables, and the stack 
segment. The stack segment is provided as an area where parameters can be passed, 
where local variables for functions are allocated space, and where return addresses for 
nested function calls and recursive functions are stored. Most compiler generated code 
pass arguments on the stack. Given this stack area in memory, it is possible to write 
programs with virtually no limit on the number of parameters passed. Without a stack it 
would be impossible to write recursive procedures or reentrant procedures. The operating 
system initializes register 29 ($sp) in the register file to the base address of this stack area 
in memory. The stack grows toward lower addresses.  
 
6.3 Argument Passing Convention
Silicon Graphics has defined the following parameter passing convention. The first four 
“in” parameters are passed to a function in $a0, $a1, $a2, and $a3. The convention states 
that space will be allocated on the stack for the first four parameters even though these 
input values are not stored on the stack by the caller.  All additional “in” parameters are 
passed on the stack. Register $v0 is used to return a value. Very few of the functions we 
write in this introductory course will involve more than four “in” parameters. Yet 
students need to gain some experience in  passing parameter on the stack. Therefore, in 
all the remaining examples and exercises students will be expected to pass all arguments 
on the stack even though this is not the convention as defined by Silicon Graphics.   
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When a programmer defines a function, the parameter list is declared. As an example, 
suppose the lead programmer has written the main program and he has assigned his 
subordinate, Jack, the task of writing a function called “JACK.” In the process of writing 
this code, it becomes clear to Jack that a portion of the task he has been assigned could be 
accomplished by calling a library function “JILL.”  Let us suppose that “JILL” has five 
parameters where three parameters are passed to the function (in parameters) and two 
parameters returned from the function (out parameters). Typically, parameters can be 
values or addresses (pointers). Within the pseudocode description of “JILL” we would 
expect to find a parameter list defined such as: JILL (A, B, C, D, E) 
 
Here is an example of how a nested function call is accomplished in assembly language: 
Notice we use the “unsigned” version of the “add immediate” instruction because we are 
dealing with an address, which is an unsigned binary number. We wouldn’t want to 
generate an exception just because a computed address crossed over the mid-point of the 
memory space.  

addiu $sp, $sp, -24  # Allocate Space on the Stack 
sw $t1,  0($sp)  # First In Parameter “A” at Mem[Sp] 
sw $t2,  4($sp)  # Second In Parameter “B” at Mem[Sp+ 4] 
sw $t3,  8($sp)  # Third In Parameter “C” at  Mem[Sp+ 8] 
sw $ra,  20($sp)  # Save Return address 
jal JILL   # Call the Function 
lw $ra, 20($sp)  # Restore Return Address to Main Program 
lw $t4, 12($sp)  # Get First Out Parameter “D”  at Mem[Sp+12] 
lw $t5, 16($sp)  # Get Second Out Parameter “E”  at Mem[Sp+16] 
addiu $sp, $sp, 24  # De-allocate Space on the Stack 

 

6.4 Nested Function Calls and Leaf Functions
The scenario described above is an example of a nested function call. When the main 
program called JACK ( jal   JACK ) the return address back to the main program was 
saved in $ra. Before JACK calls JILL, this return address must be saved on the stack, and 
after returning from JILL, the return address to main must be restored to register $ra. The 
saving and restoring of the return address is only necessary for nested function calls. The 
first few instructions within the function “JILL” to get the input parameters A, B, and C 
would  be: 
JILL: 

lw $a0,  0($sp)  # Get First In Parameter “A” at Mem[Sp] 
lw $a1,  4($sp)  # Get Second In Parameter “B” at Mem[Sp+4] 
lw $a2,  8($sp)  # Get Third In Parameter “C” at  Mem[Sp+8] 

 
The last few instructions in the function “JILL” to return the two out parameters D and E 
would be: 

sw $v0, 12($sp)  # First Out Parameter “D”  at Mem[Sp+12] 
sw $v1, 16($sp)  # Second Out Parameter “E”  at Mem[Sp+16] 
jr $ra   # Return to JACK 
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In the case of nested function calls, sometimes there is one more complexity. Let’s 
suppose in the case of the function JACK it is important the values in registers $t6 and 
$t7 not be lost as a result of calling JILL. The only way to insure these values will not be 
lost is to save them on the stack before calling JILL, and to restore them on return from 
JILL. Why does Jack need to save them? Because he is calling the function JILL and 
JILL may use the $t6 and $t7 registers to accomplish her task. Note that an efficient 
programmer will save only those “t” registers that need to be saved. This decision is 
made by understanding the algorithm being implemented. A leaf function will never have 
to save “t” registers. The following is an example of how Jack would insure the values in 
registers $t6 and $t7 are not be lost: 
 

addiu $sp, $sp, -32  # Allocate More Space on the Stack <#### 
sw $t1,  0($sp)  # First In Parameter “A” at Mem[Sp] 
sw $t2,  4($sp)  # Second In Parameter “B” at Mem[Sp+ 4] 
sw $t3,  8($sp)  # Third In Parameter “C” at  Mem[Sp+ 8] 
sw $ra,  20($sp)  # Save Return address 
sw $t6,  24($sp)  # Save $t2 on the stack <#### 
sw $t7,  28($sp)  # Save $t3 on the stack <#### 
jal JILL   # call the Function  
lw $t6,  24($sp)  # Restore $t2 from the stack <#### 
lw $t7,  28($sp)  # Restore $t3 from the stack <#### 
lw $ra, 20($sp)  # Restore Return Address to Main Program 
lw $t4, 12($sp)  # Get First Out Parameter “D”  at Mem[Sp+12] 
lw $t5, 16($sp)  # Get Second Out Parameter “E”  at Mem[Sp+16] 
addiu $sp, $sp, 32  # De-allocate Space on the Stack <#### 

 

6.5 Local Variables are Allocated Space on the Stack
As functions become more complex, a situation may arise where space in memory is   
required to accomplish a task. This could be a temporary data buffer, or a situation where 
the programmer has run out of registers and needs additional variables on the stack. For 
example, if Jill needs a temporary array of 16 characters the code to allocate space on the 
stack for this temporary array would be: 
 

addiu $sp, $sp, -16 # Allocate Space for a temporary array 
move $a0, $sp # Initialize a pointer to the array 

 
Before exiting the function, this buffer space must be de-allocated. 
 
6.6 Frame Pointer
In the code immediately above you will notice that allocating space on the stack for local 
variables requires the address in the stack pointer be changed. In all previous examples 
we assumed the stack pointer would not change and we could reference the in and out 
parameters in memory with the same offset that was used by the caller. There is a way to 
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establish a fixed reference point within each function that will maintain the same offset 
memory references to parameters as was used by the caller. As part of the register usage 
convention we have a register with the name $fp (register number 30), which stands for 
frame pointer. A stack frame is also referred to as an activation record. The activation 
record for any function is that segment in memory containing a function’s parameters, 
saved registers, and local variables. The use of a frame pointer is not a necessity. Some 
high-level language compilers generate code that use a frame pointer and others don’t. 
None of the exercises in this book are of sufficient complexity to warrant the use of a 
frame pointer. 
 

Exercises
6.1 MinMax (&X, N, Min, Max)

Write a function to search through an array “X” of  “N” words to find the 
minimum and maximum values.  The parameters &X and N are passed to the 
function on the stack, and the minimum and maximum values are returned on the 
stack. (Show how MinMax is called) 

 
6.2 Search (&X, N, V, L) 

Write a function to sequentially search an array X of N bytes for the relative 
location L of a value V.  The parameters &X,  N, and V are passed to the function 
on the stack, and the relative location L (a number ranging from 1 to N) is 
returned on the stack. If the value V is not found, the value -1 is returned for L. 

 
6.3 Scan (&X, N, U, L, D)

Write a function to scan an array “X” of  “N” bytes counting how many bytes are 
ASCII codes for: 

 a. upper case letters - U 
 b. lower case letters - L 
 c. decimal digits - D 
 

Return the counts on the stack. The address of the array and the number of bytes 
N will be passed to the function on the stack. Write a short main program to test 
this function. 

 
6.4 Hypotenuse (A, B, H) 

This is an exercise in calling nested functions and passing parameters on the 
stack. Write a function to find the length of the hypotenuse of a right triangle 
whose sides are of length A and B. Assume that a math library function  
“sqr(V, R)” is available, which will compute the square root of any positive value 
V, and return the square root result R. Write a main program to test this function. 
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6.5 AVA (&X, &Y, &Z, N, status)
Write a function to perform an absolute value vector addition.  Use the stack to 
pass parameters. The parameters are the starting address of three different word 
arrays (vectors) : X, Y, Z, and an integer value N specifying the size of the 
vectors.  If overflow ever occurs when executing this function, an error status of 
“1” should be returned and the function aborts any further processing. Otherwise, 
return the value “0” for status. The function will perform the vector addition: 

 
Xi = | Yi | + | Zi | ; with  i  going from 0 to N - 1.  

 
Also write a main program to test this function. 

 
6.6 Fibonacci (N, E)

Write a function to return the N th element in the Fibonacci sequence. A value N is 
passed to the function on the stack, and the N th Fibonacci number E is returned on the 
stack. If N is greater than 46 overflow will occur, so return a value of 0 if N is greater 
than 46. Also show an example of calling this function to return the 10th element in the 
sequence. The first few numbers in the Fibonacci sequence are:  0, 1,  1,  2,  3,  5 . . . . 

 
6.7 BubSort (&X, N)

Write a function to sort an array “X” of  “N” words into ascending order using the bubble 
sort algorithm. The address of the array and the value N will be passed to the function on 
the stack. Show how the sort function is called.  

 
6.8 RipSort (&X, N)

Write a function to sort an array “X” of “N” words into ascending order using the ripple 
sort algorithm. The address of the array and the value N will be passed to the function on 
the stack. 

 
6.9 Roots (a, b, c, Status, R1, R2)

This is an exercise in nested function calls and passing parameters on the stack.  
Write a function to calculate the roots of any quadratic equation of the form 
 y = ax2 + bx + c where the integer values a, b, and c are passed to the function on the 
stack.  Status should indicate the nature of the results returned as indicated below:  

0 : 2 real roots R1 & R2 
1 : 1 real root in R1= -a/b 
2 : 2 complex roots of the form (R1 + i R2) 
3 : no roots computed (error) 

Assume a math library function “sqrt” is available, that will compute the square root of a 
positive argument. 
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CHAPTER 7

Reentrant Functions 
Why did the scientist install a knocker on his door? 
To win the no bell prize. 

7.1 Introduction
It is important that all shared operating system functions and library functions on a multi-
tasking computer system be reentrant. One example of a multi-tasking system would be a 
time-sharing system. A time-sharing system is one where multiple users are sharing the 
computer’s resources. These users are given the illusion that the computer is immediately 
responsive to every keystroke they make at their keyboards. In reality, every active user 
is given a slice of time to utilize the computer’s resources. This is accomplished by 
having a real-time clock generator connected to the interrupt system. If the real-time 
clock produces an interrupt every one hundredth of a second, then 100 completely 
different tasks could be running on the machine with each task running for one hundredth 
of a second every second. If this is a computer that executes one million instructions per 
second, then every task could theoretically be executing nearly ten thousand instructions 
per second. It may appear that 100 different tasks are running “simultaneously,” but in 
reality each task is running for a fraction of a second every second. When the real-time 
clock produces an interrupt the current address in the Program Counter (PC) is saved in a 
special register called EPC and then the Program Counter is loaded with the address of 
the interrupt processing routine. The first thing this routine does is to save the contents of 
any registers it will be using to handle the interrupt. Before returning back to this same 
user these register are restored to their original values. See Chapter 8 for more details. 
 
Let’s suppose that fifty users of a time-share system are all using the same compiler or 
text-editor “simultaneously.” Does this mean that fifty separate copies of the text-editor 
must be loaded into memory, or only one copy? The answer is only one copy, if the 
developers of the compiler and the text-editor insured that the code was reentrant. 
 
7.2 Rules for Writing Reentrant Code
Reentrant code is pure code. Reentrant code has no allocated memory variables in the 
global data segment. It is ok to have constants in the global data segment, but it is not ok 
to have memory locations that are modified by the code in the global data segment. All 
local variables for reentrant code must be dynamically allocated space on the stack. 
Reentrant code helps to conserve memory space, because memory is dynamically 
allocated space on the stack when it is needed and de-allocated when it is no longer 
needed. 
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Every user of a multi-tasking system is allocated his/her own area in memory for his/her 
stack. This means that if fifty different users are active, there will be fifty different stacks 
in different parts of memory. If these fifty different users all “simultaneously” invoke the 
same function, there will be fifty different areas in memory where variables are allocated 
space. The important concept is that there would be only one copy of the code shared by 
all fifty users, and when any particular user is active, the code will be operating on the 
data in that user’s stack. 
 

7.3 Reentrant I/O Functions
System services to perform I/O should be reentrant. In Chapter Five we discussed the 
algorithms to perform I/O in decimal and hexadecimal representation. To make these 
functions reentrant, allocation of space for character buffers must be removed from the 
global data segment and code must be inserted into the functions to dynamically allocate 
space on the stack for character buffers. Lets suppose you want to allocate space on the 
stack for an input buffer of 32 characters, initialize a pointer in $a0 to point to the first 
character in this buffer, and then read in a string of characters from the keyboard into this 
buffer. This can be accomplished with the following instructions. 
 

addiu $sp, $sp, -32  # Allocate space on top of stack 
move $a0, $sp  # Initialize $a0 as a pointer to the buffer 
li $a1, 32   # Specify length of the buffer 
li $v0, 8   # System call code for Read String 
syscall 

 

7.4 Personal Computers
Most personal computers now have multi-tasking operating systems. For example, a text 
editor, a spell check program, and voice recognition program could all be running at the 
same time.  The voice recognition program would be analyzing the speech waveforms 
producing text as input to the word processor, and the interactive spell check monitor 
would be warning the user of spelling errors it detects. If all of these applications were 
developed by the same organization, it would have developed a library of functions to 
perform certain tasks. It would be important all of the code in this library be reentrant 
code, because multiple applications conceivably could be executing the same library 
function “simultaneously.” 
 

7.5 Recursive Functions
Writing a recursive function is similar to writing reentrant code, but with one additional 
complexity. In the case of reentrant code, an interrupt is the event that would create a 
situation where two users are sharing the same code. When an interrupt occurs, the 
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interrupt handler, which is a system program, will save the values of all the processor 
registers on the stack when the exception occurred. 
 
In the case of writing a recursive function, it is the responsibility of the programmer to 
save on the stack the contents of all registers relevant to the current invocation of the 
function before a recursive call is executed. Upon returning from a recursive function call 
the values saved on the stack must be restored to the relevant registers. 
 
Exercises

7.1 Reverse 
Write a reentrant function that will read in a string of characters (60 characters 
maximum) and will print out the string in reverse. For example the string “July is 
Hot” will be printed as “toh si yluJ.” 

7.2 Palindrome (b)
Write a reentrant function that will determine if a string is a palindrome. The 
function should read in a string (16 characters max) placing them in a buffer on 
the stack. This procedure should call a “Search” function to determine the exact 
number of actual characters in the string. A Boolean value of true or false (1 or 0) 
will be returned on the stack to indicate if the string is a palindrome. 
 

7.3 Factorial
Write an iterative function to compute N factorial, and then write a recursive function to 
compute N factorial. Compare the time required to execute the two different versions. 

 
7.4 Fibonacci (N, E)

Write a recursive function to return the Nth element in the Fibonacci sequence. 
Use the stack to pass information to and from the function. A value of 0 should be 
returned, if overflow occurs when this function executes.  
The first few numbers in the sequence are:  0, 1, 1,  2,  3,  5,  8, . . . 

 
7.5 Determinant (&M, N, R)

Write a recursive function to find the determinant of a N x N matrix (array). The address 
of the array M and the size N are passed to the function on the stack, and the result R is 
returned on the stack:  
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7.6 Scan (&X, Num)
Write an efficient MIPS assembly language function Scan (&X, Num) that will 
scan through a string of characters with the objective of locating where all the 
lower case vowels appear in the string, as well as counting how many total lower 
case vowels appeared in a string. Vowels are the letters a, e, i, o, u.  
The address of the string "X" is passed to the function on the stack, and the 
number of vowels found “NUM” is returned on the stack. A null character 
terminates the string. Within this function, you must include code to call any 
student’s “PrintDecimal” function to print, right Justified, the relative position 
within the string where each vowel was found. Notice this will be a nested 
function call. Here is an example string: 

 
The quick brown fox. 

 
For the above example string the output of your program would be

A Vowel was Found at Relative Position :                  3 
A Vowel was Found at Relative Position :                  6 
A Vowel was Found at Relative Position :                  7 
A Vowel was Found at Relative Position :                13    
A Vowel was Found at Relative Position :                18    

 
Analyze your Scan function. Is it a reentrant function? _____(yes/no)  
Explain why. 
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CHAPTER 8

Exception Processing 
How much do pirates pay for ear rings? 
A Buccaneer. 

8.1 Introduction
Under normal circumstances, anytime the mouse button is pushed or the mouse is moved, 
or a key on the keyboard is pressed, the computer responds.  The natural question to ask 
is, "How does one program a computer to provide this kind of interactive response from 
the computer?” The answer is interrupts.   
 
The key to building a computer system that provides superior processing throughput, and 
also provides interactive response is to include within the hardware design some method 
for interrupting the currently running program when certain external events occur.  The 
method implemented by the MIPS designers was to include additional hardware referred 
to as coprocessor 0 that contains a number of specialized registers for exception handling 
as well as support for memory mapping. This is where the “Translation Lookaside 
Buffer” (TLB) is located. This coprocessor is designed to send an interrupt signal to the 
CPU control unit when an exception occurs. Coprocessor 1 is the floating–point unit.  
 

8.2  The Trap Handler
Whenever an exception occurs and the processor has reached the state where the next 
instruction would be fetched, the CPU controller goes to a special state. In this special 
state, the Cause register is loaded with a number to identify the source of the interrupt. 
Mode information in the status register is changed and all interrupts are disabled. Also, 
the address at which the program can be correctly restarted is saved in a register called 
the Exception Program Counter (EPC) and the program counter is loaded with the 
address in memory where the first instruction of the interrupt response routine is located. 
The interrupt response routine is simply some MIPS assembly language code that was 
written by a “systems programmer.” 
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In the case of the PCSpim simulator this exception processing entry point is memory 
location 0x8000080. This segment of memory is referred to as kernel segment 0 (kseg0). 
Students are encouraged to analyze PCSpim’s trap handler routine, which is always 
displayed in the Text Segment. This file “trap.handler” is also available in the PCSpim 
folder that you downloaded over the internet. A copy of the existing trap handler appears 
in Appendix E. To gain a more in depth understanding of trap handlers, students could 
experiment by creating a new version of the trap handler. 
 
The MIPS architecture defines 17 exceptions: 8 external interrupts (6 hardware interrupts 
and 2 software interrupts) and 9 program exception conditions, which are also referred to 
as traps. One example of a trap is an arithmetic overflow. For PCSpim we only have 
traps. The part of the machine that contains the Status, Cause, and EPC registers is 
referred to as coprocessor 0. This coprocessor contains another register called Bad 
Virtual Address, which is loaded when a Address Error is detected. For example, 
attempting to read or write to an address where no physical memory exists, or attempting 
to write to the text segment, which is protected as read only. The instructions used to 
access the coprocessor registers are shown in the example below:  
 
mfc0   $k0,  $13 # CPU register $k0 is loaded with contents of coprocessor register 13  
mtc0   $0,   $13  # CPU register $0 is stored in coprocessor register 13 
 
The second instruction, Move to Coprocessor (mtc0), can be confusing because the 
destination register is specified in the right hand field, which is different from all other 
MIPS instructions. Coprocessor register 8 is the Bad Virtual Address register, 12 is the 
Status register, 13 is the Cause register, and 14 is the EPC register. 
 
The first task of the interrupt response routine is to execute some code to save the state of
the machine as it existed when the interrupt occurred. After the interrupt has been 
processed the machine is placed back in this same state and the instruction “Return From 
Exception” (rfe) is executed. The rfe instruction loads the program Counter (PC) with the 
contents of the EPC register and restores the Current and Previous Mode in the Status 
register. Registers $k0 and $k1 are reserved for the operating system. It is possible that 
the interrupt handler can be written to use only these registers and very little else. 
Analyzing PCSpim’s interrupt handler you will find that the only registers it saves are 
$v0 and $a0. This interrupt handler is not reentrant because it saves these two registers in 
specific memory locations. To make the code reentrant these registers would have to be 
saved on a stack allocated to the operating system.  
 
Real time systems and embedded processors provide much more sophisticated priority 
interrupt systems, where a lower priority interrupt handler routine can be interrupted by a 
higher priority interrupt. The MIPS architecture provides interrupt, mask bits within the 
Status register, which makes it possible to write a priority interrupt handler.  
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Exercises
8.1 Write your most efficient assembly language code translation for the following 

function and main line calling program. Note, all communication with the 
procedure must use a stack frame. Make use of the fact that multiplication and 
division by powers of 2 can be performed most efficiently by shifting. 
void  chico (int *X, int Y,  int Z ) 

 {*X =  Y/ 4  -  Z * 10 + *X * 8 ;}  
 int  main() 
 {int J, K, L , M ; 
 cin >> J, K, L; 
 chico (& J,  K, L); 
 M = J  - ( K + L); 
 cout <<  M; 
 return 0  

}

8.2 Write a function MUL32 (m, n, p, f) that will find the 32-bit product “p” of two 
arguments m and n. If the two’s complement representation of the product cannot 
be represented with 32 bits, then the error flag “f” should be set to 1 otherwise the 
error flag is set to 0. Pass all arguments on the stack. 

 
8.3 Write a function Adduovf (x, y, s) that will find the 32-bit sum “s” of two 

unsigned arguments “x” and “y”. An exception should be generated if the 
unsigned representation of the sum results in overflow. Perform all 
communication on the stack. 

 
8.4 Write a function Add64 that will perform a 64-bit addition: x = y + z, where the 

values for x, y, and z are stored as two 32-bit words each:  
Add64 (x1: $t1, x0: $t0,   y1: $t3,   y0: $t2,   z1: $t5,    z0: $t4) 
All six parameters are passed on the stack. If the 64-bit sum results in overflow an 
exception should be generated. 

 
After writing your code, calculate the performance indexes: 
Space:_________________(Words of code)  
Time: _________________(Maximum number of clock cycles to execute) 

 

$t1 $t0

y

z

x
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8.5 When the MIPS mult instruction is executed, a 64-bit product is produced. Many 
programs doing numerical calculations are designed to process only 32-bit results. 
For applications written to perform 32-bit precision arithmetic, it is extremely 
important to detect when the product of two numbers can not be represented with 
32 bits, so that some alternative procedures may be invoked. 

 
Write a reentrant library function anyone could use, called MUL32 (m, n, p). All 
function parameters will be passed on the stack. This function should provide the 
following features:  
 
1. If the product of the two input arguments m and n cannot be represented with 

32 bits (assuming the two’s complement number system), then an exception 
should be generated. 

 
2.   This function should also provide the following optimization features: 

(a) Check if m or n is zero, and return zero without taking 32 clock cycles to 
execute the mult instruction. 
(b) Check if m or n is plus one (1) or minus one  (-1), and return the correct 
result without taking 32 clock cycles to execute the mult instruction. 
(c) Check if m or n is plus two (2) or minus two  (-2), and return the correct 
result without taking 32 clock cycles to execute the mult instruction. If the 
product cannot be represented with 32-bits, then an exception should be 
generated. 
 

Provide inline comments and write a paragraph in English to describe all of the 
conditions that your code tests for to detect overflow.  
(HINT—The XOR instruction can be useful when writing this function.) 

 
With this function you will demonstrate how to write MIPS assembly language code 
involving nested function calls. Write a function to perform a vector product.  
vectorprod (&X, &Y, &Z, N, status). Vectorprod will call the MUL32 function. Use 
the stack to pass arguments. The in parameters are the starting address of three different 
word arrays (vectors) : X, Y, Z, and an integer value N specifying the size of the vectors.  
Status is an out parameter to indicate if overflow ever occurred while executing this 
function. The procedure will perform the vector product:  

Xi = Yi * Zi ; with  i  going from 0 to N - 1 
Write a MIPS assembly language main program that could be used to test the 
vectorprod function.  
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CHAPTER 9

A Pipelined Implementation 
What’s another word for thesaurus?  

9.1 Introduction
In all the previous chapters of this book we developed assembly language code for a 
simplified model of the MIPS architecture. A technique call pipelining is used in all 
actual implementations of the MIPS architecture to build a processor that will run almost 
five times faster than the simplified model introduced in Chapter 1.  Essentially this 
speed up is accomplished by utilizing a concept analogous to Henry Ford’s method of 
building cars on an assembly line. Using this concept the CPU chip is designed to process 
each instruction by passing information through a series of functional units. The 
following explanation describes a five stage pipeline implementation. Within the 
processor there are five different stages of hardware to process an instruction. With a five 
stage pipelined implementation, we will have five different instructions at different stages 
of execution moving through the pipeline. It takes five clock cycles for any instruction to 
work its way through the pipeline, but since there are five instructions being executed 
simultaneously, the average execution rate is one instruction per clock cycle.  The 
function performed in each of these five stages is: 
 
1.   Fetch the instruction from cache memory and load it into the Instruction register (IR). 
 Increment the Program Counter (PC) by four. 
 
2.   Fetch values Rs and Rt from the Register File. If it is a branch instruction and the 

branch condition is met, then load the PC with the branch target address. 
 

3.   Perform an arithmetic or logic function in the ALU. This is the stage where an 
addition is performed to calculate the effective address for a load or store instruction. 

 
4.   If the instruction is a load, read from the data cache. If the instruction is a store, write 

to the data to cache. Otherwise, pass the data in the Result register on to the Write 
Back register. 

 
5.   Store the value in the Write Back register to the Register File. Notice that when the 

first instruction into the pipeline is storing results back to the Register File the forth 
instruction into the pipeline is simultaneously reading from the register file.
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Figure 9.1 Pipelined Datapath Diagram 
 

9.2 A Pipelined Datapath
Figure 9.1 shows a five stage datapath diagram with all the major components identified. 
Understand that during each clock cycle all five pipeline stages are performing their 
function and passing their results on to the next pipeline stage, via a buffer register. The 
Instruction Register (IR) is the buffer register that holds the results of phase one. 
Registers Rs and Rt hold the results of phase two. The Result register holds the result of 
the ALU operation. The Write Back register holds the data read from memory in the case 
of a load instruction, and for all other instructions it is a buffer register holding the value 
that was in the Result register at the end of the previous clock cycle.  
 
A pipelined processor creates new challenges for the assembly language programmer. 
Specifically these challenges are referred to as data hazards and control hazards. The term  
data hazard refers to the following situation. Suppose we have three sequential 
instructions x, y, and z that come into the pipeline. Suppose that x is the first instruction 
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into the pipeline followed by y and z. If the results computed by instruction x are need by 
y or z then we have a data hazard. The hardware solution to this problem is to include 
forwarding paths in the machine’s datapath so that even thought the results have not yet 
been written back to the register file, the needed information is forwarded from the Result 
register or the Write Back register to the input of the ALU. Some of these forwarding 
paths are shown in figure 9.1. There is one type of data hazard that cannot be solved with 
forwarding hardware. This is a situation where a load instruction is immediately followed 
by an instruction that would use the value fetched from memory. The only solution to this 
problem is to rearrange the assembly language code so that the instruction following the 
load is not an instruction that uses the value being fetched from memory. In recognition 
of this situation we refer to load instructions on pipelined processors as being “delayed 
loads.” If the existing instructions in the algorithm cannot be rearranged to solve the data 
hazard then a “no operation” (nop) instruction is placed in memory immediately 
following the load instruction. 
 
Essentially there is no way to eliminate the control hazards so the solution is to recognize 
that a branch or jump instruction will take effect after the instruction following the branch 
or jump is in the pipeline. This means that a programmer must recognize this fact and 
organize the code to take this into account. Typically programmers will find some 
instruction in their code that the branch is not dependant on that proceeded the branch 
and place it in the delay slot following the branch. If the existing instructions in the 
algorithm cannot be rearranged to solve the control hazard then a “no operation” (nop) 
instruction is placed in memory immediately following the branch instruction. 
 
9.3 PCSpim Option to Simulate a Pipelined Implementation
The latest version of PCSpim provides an option to run the simulator as if it were a 
pipelined implementation. To invoke this option go to settings under the simulation pull 
down menu and click the “Delayed Branches” and “Delayed Load” boxes. Using this 
option you can gain experience in writing assembly language code that will run on a 
pipelined implementation of the MIPS architecture.  
 
Compilers are used to translate high-level code to assembly language code. The final 
phase of this translation is called code generation. Whoever writes the program to do 
code generation has to be aware of these special requirements associated with a pipelined 
implementation.  
 
Exercises
9.1 Taking into consideration delayed branches and delayed loads, write a MIPS 

function to search through an array “X” of “N” words to find how many of the 
values in the array are evenly divisible by four. The address of the array will be 
passed to the function using register $a0, and the number of words in the array 
will be passed in register $a1. Return results in register $v0. 

 



70

9.2 Taking into consideration delayed branches and delayed loads, write a MIPS 
function to sort an array “X” of  “N” words into ascending order using the bubble 
sort algorithm. The address of the array and the value N will be passed to the 
function on the stack. Show how the sort function is called. 

 
9.3 Taking into consideration delayed branches and delayed loads, write a MIPS 

 function Adduovf ( x, y, s) that will find the 32-bit sum “s” of two unsigned 
arguments “x” and “y”. An exception should be generated if the unsigned 
representation of the sum results in overflow. Perform all communication on the 
stack. 

 
9.4 Taking into consideration delayed branches and delayed loads, write a MIPS, 

function to return the Nth element in the Fibonacci sequence. A value N is passed 
to the function on the stack, and the Nth Fibonacci number E is returned on the 
stack. If N is greater than 46 overflow will occur, so return a value of 0 if N is 
greater than 46. Also show an example of calling this function to return the 10th 
element in the sequence. The first few numbers in the Fibonacci sequence are: 
 0, 1,  1,  2,  3,  5 . . . . 
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CHAPTER 10

Embedded Processors 
What did the hotdog say when he crossed the finish line? 
I’m the wiener!  

10.1 Introduction
Embedded processors are ubiquitous. They are found in toys, games, cameras, 
appliances, cars, VCRs, televisions, printers, fax machines, modems, disk drives, 
instrumentation, climate control systems, cellular telephones, routers, and aerospace 
applications, just to name a few. It is estimated  in the year 2000, over $15 billion  worth 
of embedded processors were shipped. If you go to the following web-site you can read 
in more detail exactly how the MIPS processor is being used in embedded systems: 

www.mips.com/

10.2 Code Development for Embedded Processors
An embedded system usually lacks secondary storage (e.g. a hard disk). Typically all of 
the code is stored in Read Only Memory (ROM). Usually, most of the code written for 
embedded processors is first written in a high-level languages such as C. Programmers 
who can visualize how the high-level code will be translated into assembly language code 
will most likely develop the “best” code. Then programmers who have an intimate 
understanding of the assembly language for the target processor, will analyze the code 
generated by the compiler looking for ways to make further optimizations. In other 
words, they look for ways to speed up the execution, or to reduce the amount of code that 
has to be stored in ROM. Typically, for real-time applications, the code must be fine-
tuned, to meet the system’s performance requirements. Any programmer with the skills to 
accomplish this kind of optimization will be highly sought after. The kernel of the 
operating system deals with responding to interrupts and scheduling tasks. This code as 
well as the I/O drivers will typically be the first code to be scrutinized. 
 
The Motorola 68000 and its derivatives currently have the largest share of the embedded 
market. While the MIPS processor is classified as a RISC processor, the Motorola 68000 
is classified as a Complex Instruction Set Computer (CISC). With a solid understanding 
of the MIPS processor and experience in developing assembly language code for the 
MIPS processor, it is a relatively easy task to make the transition to assembly language 
for other processors. 
 

http://www.mips.com/
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10.3 Memory Mapped I/O
MIPS processors communicate with the outside word using memory mapped Input 
Output (I/O). There are registers within the I/O devices. Unique address decode logic is 
associated with each of these registers. When the MIPS processor reads or writes to one 
of these address the processor is actually reading from or writing to a register in one of 
the I/O devices. Using this straight forward technique an embedded processor can acquire 
information about the state of whatever is being controlled and can send out signals to 
change the state. 
 

10.4 References
To write code for embedded systems you will need to know much more than has been 
provided by this introductory book. In this book we have not discussed how to initialize 
and control the cache.  
 
Currently there are two very good books available specifically targeted for MIPS 
embedded systems programming.  “See MIPS Run” by Dominic Sweetman  
 (ISBN 1-55860-410-3) and “The MIPS Programmers Handbook” by Farquhar and 
Bunce (ISBN 1-55860-297-6). These books describe how to initialization and manage 
cache memory, and how to implement a priority  interrupt system. These books also 
provide a detailed explanation of the coprocessor 1, which implements the floating point 
instructions. 
 
The company Algorithmics Ltd., is probably the most experienced MIPS technology 
support group anywhere. It was founded in 1988 by a group of MIPS veterans. Their 
web-site is: http://www.algor.co.uk/
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APPENDIX A

Quick Reference 
 
Integer Instruction Set 
Name       Syntax           Space/Time
Add:       add Rd, Rs, Rt  1/1 
Add Immediate:     addi Rt, Rs, Imm  1/1 
Add Immediate Unsigned:    addiu  Rt, Rs, Imm  1/1 
Add Unsigned:     addu Rd, Rs, Rt  1/1 
And:       and  Rd, Rs, Rt  1/1 
And Immediate:     andi Rt, Rs, Imm  1/1 
Branch if Equal:     beq Rs, Rt, Label  1/1 
Branch if Greater Than or Equal to Zero:  bgez Rs, Label  1/1 
Branch if Greater Than or Equal to Zero and Link: bgezal Rs, Label  1/1 
Branch if Greater Than Zero:    bgtz Rs, Label  1/1 
Branch if Less Than or Equal to Zero:  blez Rs, Label  1/1 
Branch if Less Than Zero and Link:   bltzal  Rs, Label  1/1 
Branch if Less Than Zero:    bltz Rs, Label  1/1 
Branch if Not Equal:     bne Rs, Rt, Label  1/1 
Divide:      div Rs, Rt   1/38 
Divide Unsigned:     divu Rs, Rt   1/38 
Jump:       j Label   1/1 
Jump and Link:     jal Label   1/1 
Jump and Link Register:    jalr Rd, Rs   1/1 
Jump Register:     jr Rs   1/1 
Load Byte:      lb Rt, offset(Rs)  1/1 
Load Byte Unsigned:     lbu Rt, offset(Rs)  1/1 
Load Halfword:     lh Rt, offset(Rs)  1/1 
Load Halfword Unsigned:    lhu Rt, offset(Rs)   1/1 
Load Upper Immediate:     lui Rt, Imm  1/1 
Load Word:      lw Rt, offset(Rs)  1/1 
Load Word Left:     lwl Rt, offset(Rs)  1/1 
Load Word Right:     lwr Rt, offset(Rs)  1/1 
Move From High:     mfhi Rd   1/1 
Move From Low:     mflo Rd   1/1 
Move to High:      mthi Rs    1/1 
Move to Low:      mtlo Rs   1/1 
Multiply:      mult Rs, Rt   1/32   
Multiply Unsigned:     multu   Rs, Rt   1/32 
NOR:       nor  Rd, Rs, Rt  1/1 
OR:       or  Rd, Rs, Rt  1/1 
OR Immediate:     ori Rt, Rs, Imm  1/1 
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Store Byte:      sb Rt, offset(Rs)   1/1 
Store Halfword:     sh Rt, offset(Rs)   1/1 
Shift Left Logical:     sll Rd, Rt, sa  1/1 
Shift Left Logical Variable:    sllv Rd, Rt, Rs  1/1 
Set on Less Than:      slt Rd, Rt, Rs  1/1 
Set on Less Than Immediate:    slti Rt, Rs, Imm  1/1 
Set on Less Than Immediate Unsigned:   sltiu Rt, Rs, Imm  1/1 
Set on Less Than Unsigned:    sltu Rd, Rt, Rs  1/1 
Shift Right Arithmetic:    sra Rd, Rt, sa  1/1 
Shift Right Arithmetic Variable:   srav Rd, Rt, Rs  1/1 
Shift Right Logical:     srl Rd, Rt, sa  1/1 
Shift Right Logical Variable:    srlv Rd, Rt, Rs  1/1 
Subtract:      sub Rd, Rs, Rt  1/1 
Subtract Unsigned:     subu Rd, Rs, Rt  1/1 
Store Word:      sw Rt, offset(Rs)   1/1 
Store Word Left:     swl Rt, offset(Rs)  1/1 
Store Right:      swr Rt, offset(Rs)  1/1 
System Call:       syscall    1/1  
Exclusive OR:      xor  Rd, Rs, Rt  1/1 
Exclusive OR Immediate:    xori Rt, Rs, Imm  1/1 
 
Macro instructions 
Name       Syntax        Space/Time
Absolute Value:     abs  Rd, Rs 3/3 
Branch if Equal to Zero:    beqz   Rs, Label  1/1 
Branch if Greater Than or Equal :   bge   Rs, Rt, Label  2/2 
Branch if Greater Than or Equal Unsigned:  bgeu    Rs, Rt, Label   2/2 
Branch if Greater Than:    bgt   Rs, Rt, Label   2/2 
Branch if Greater Than Unsigned:   bgtu  Rs, Rt, Label   2/2 
Branch if Less Than or Equal:   ble   Rs, Rt, Label   2/2 
Branch if Less Than or Equal Unsigned:  bleu   Rs, Rt, Label   2/2 
Branch if Less Than:     blt   Rs, Rt, Label   2/2 
Branch if Less Than Unsigned:   bltu Rs, Rt, Label   2/2 
Branch if Not Equal to Zero:    bnez Rs, Label   1/1 
Branch Unconditional:    b Label   1/1 
Divide:      div   Rd, Rs, Rt           4/41 
Divide Unsigned:     divu   Rd, Rs, Rt  4/41 
Load Address:      la   Rd, Label   2/2 
Load Immediate:     li  Rd, value  2/2 
Move:       move  Rd, Rs   1/1 
Multiply:      mul   Rd, Rs, Rt  2/33 
Multiply (with overflow exception):   mulo  Rd, Rs, Rt  7/37 
Multiply Unsigned (with overflow exception): mulou  Rd, Rs, Rt  5/35 
Negate:      neg   Rd, Rs    1/1 
Negate Unsigned:     negu   Rd, Rs   1/1 
Nop:       nop    1/1 
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Not:       not Rd, Rs   1/1 
Remainder Unsigned:     remu Rd, Rs, Rt  4/40 
Rotate Left Variable:     rol   Rd, Rs, Rt  4/4 
Rotate Right Variable:    ror   Rd, Rs, Rt  4/4 
Remainder:      rem Rd, Rs, Rt  4/40 
Rotate Left Constant:     rol        Rd, Rs, sa  3/3 
Rotate Right Constant:    ror   Rd, Rs, sa  3/3 
Set if Equal:      seq   Rd, Rs, Rt  4/4 
Set if Greater Than or Equal:    sge   Rd, Rs, Rt  4/4 
Set if Greater Than or Equal Unsigned:  sgeu Rd, Rs, Rt  4/4 
Set if Greater Than:     sgt   Rd, Rs, Rt   1/1 
Set if Greater Than Unsigned:   sgtu  Rd, Rs, Rt   1/1 
Set if Less Than or Equal:    sle  Rd, Rs, Rt  4/4 
Set if Less Than or Equal Unsigned:   sleu   Rd, Rs, Rt  4/4 
Set if Not Equal:     sne   Rd, Rs, Rt  4/4 
Unaligned Load Halfword Unsigned:   ulh   Rd, n(Rs)  4/4 
Unaligned Load Halfword:    ulhu   Rd, n(Rs)  4/4 
Unaligned Load Word:    ulw   Rd, n(Rs)  2/2 
Unaligned Store Halfword:    ush  Rd, n(Rs)  3/3 
Unaligned Store Word:    usw   Rd, n(Rs)  2/2 
 
System I/0 Services 
Service Code in $v0 Arguments    Results   
Print an Integer 1 $a0 = Integer Value to be Printed
Print Float   2 
Print Double  3 
Print a String 4 $a0 = Address of String in Memory
Read an Integer  5 Integer Returned in $v0
Read Float  6 
Read Double  7 
Read a String  8 $a0 = Address of Input Buffer in Memory  

$a1 = Length of Buffer (n)    
Sbrk   9 $a0 = amount    Address in $v0 
Exit 10

The system call Read Integer reads an entire line of input from the keyboard up to and 
including the newline. Characters following the last digit in the decimal number are 
ignored. Read String has the same semantics as the Unix library routine fgets. It reads up 
to n – 1 characters into a buffer and terminates the string with a null byte. If fewer than  
n – 1 characters are on the current line, Read String reads up to and including the newline 
and again null-terminates the string. Print String will display on the terminal the string of 
characters found in memory starting with the location pointed to by the address stored in 
$a0. Printing will stop when a null character is located in the string. Sbrk returns a pointer 
to a block of memory containing n additional bytes. Exit terminates the user program 
execution and returns control to the operating system.
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Assembler Directives 
Morgan Kaufmann Publishers has generously provided an on-line version of Appendix A 
from “Computer Organization and Design: The Hardware/Software Interface” (as a 
Adobe PDF file). This is a more complete and up-to-date version of SPIM 
documentation than the one included with SPIM. Every student should down-load this 
file, which is available at: 
http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf
An exhaustive list of assembler directives may be found starting on page A-51 of this  
document. 
 
The following is a quick reference to the most commonly used assembler directives, 
which was extracted from the above source.

.align n Align the next datum on a 2n byte boundary. For example, .align 2 aligns 
the next value on a word boundary. .align 0 turns off automatic alignment 
of .half, .word, .float, and .double directives until the next .data or .kdata 
directive. 

.ascii str Store the string str in memory, but do not null-terminate it. 

.asciiz str Store the string str in memory and null-terminate it. 

.byte b1,..., bn Store the n values in successive bytes of memory. 

.data <addr> Subsequent items are stored in the data segment. If the optional argument 
addr is present, subsequent items are stored starting at address addr. 

.globl sym Declare that label sym is global and can be referenced from other files. 

.space n Allocate n bytes of space in the current segment (which must be the data 
segment in SPIM). 

.text <addr> Subsequent items are put in the user text segment. In SPIM, these items 
may only be instructions or words (see the .word directive below). If the 
optional argument addr is present, subsequent items are stored starting at 
address addr. 

.word w1,..., wn Store the n 32-bit quantities in successive memory words. 
 

Strings are enclosed in double quotes (”). Special characters in strings follow 
the C convention: 

• newline \n 
• tab   \t 
• quote  \" 

The ASCII code “back space” is not supported by the SPIM simulator. 
 
Numbers are base 10 by default. If they are preceded by 0x, they are interpreted 
as hexadecimal. Hence, 256 and 0x100 denote the same value. 

http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf
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APPENDIX B

ASCII Codes 
 
dec hex Char dec hex Char dec hex Char dec hex Char

0 00 null 32 20 sp 64 40 @ 96 60 ' 
1 01 soh 33 21 ! 65 41 A 97 61 a 
2 02 stx 34 22 " 66 42 B 98 62 b 
3 03 etx 35 23 # 67 43 C 99 63 c 
4 04 eot 36 24 $ 68 44 D 100 64 d 
5 05 enq 37 25 % 69 45 E 101 65 e 
6 06 ack 38 26 & 70 46 F 102 66 f 
7 07 bel 39 27 ' 71 47 G 103 67 g 
8 08 bs 40 28 ( 72 48 H 104 68 h 
9 09 ht 41 29 ) 73 49 I 105 69 i 

10 0a nl 42 2a * 74 4a J 106 6a j 
11 0b vt 43 2b + 75 4b K 107 6b k 
12 0c np 44 2c , 76 4c L 108 6c l 
13 0d cr 45 2d - 77 4d M 109 6d m 
14 0e so 46 2e . 78 4e N 110 6e n 
15 0f si 47 2f / 79 4f O 111 6f o 
16 10 dle 48 30 0 80 50 P 112 70 p 
17 11 dc1 49 31 1 81 51 Q 113 71 q 
18 12 dc2 50 32 2 82 52 R 114 72 r 
19 13 dc3 51 33 3 83 53 S 115 73 s 
20 14 dc4 52 34 4 84 54 T 116 74 t 
21 15 nak 53 35 5 85 55 U 117 75 u 
22 16 syn 54 36 6 86 56 V 118 76 v 
23 17 etb 55 37 7 87 57 W 119 77 w 
24 18 can 56 38 8 88 58 X 120 78 x 
25 19 em 57 39 9 89 59 Y 121 79 y 
26 1a sub 58 3a : 90 5a Z 122 7a z 
27 1b esc 59 3b ; 91 5b [ 123 7b { 
28 1c fs 60 3c < 92 5c \ 124 7c | 
29 1d gs 61 3d = 93 5d ] 125 7d } 
30 1e rs 62 3e > 94 5e ^ 126 7e ~ 
31 1f us 63 3f ? 95 5f _ 127 7f del 
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APPENDIX C
Integer Instruction Set 
 
Add: 
add Rd, Rs, Rt # RF[Rd] = RF[Rs] + RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100000

Add contents of Reg.File[Rs] to Reg.File[Rt] and store result in Reg.File[Rd]. 
If overflow occurs in the two’s complement number system, an exception is generated. 

Add Immediate: 
addi Rt, Rs, Imm # RF[Rt] = RF[Rs] + Imm 
 

Op-Code  Rs Rt  Imm  
001000ssssstttttiiiiiiiiiiiiiiii

Add contents of Reg.File[Rs] to sign extended Imm value, store result in Reg.File [Rt]. 
If overflow occurs in the two’s complement number system, an exception is generated. 

Add Immediate Unsigned: 
addiu Rt, Rs, Imm # RF[Rt] = RF[Rs] + Imm 
 

Op-Code  Rs Rt  Imm   
001001ssssstttttiiiiiiiiiiiiiiii

Add contents of Reg.File[Rs] to sign extended Imm value, store result in Reg.File[Rt]. 
No overflow exception is generated. 

Add Unsigned: 
addu  Rd, Rs, Rt # RF[Rd] = RF[Rs] + RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100001

Add contents of Reg.File[Rs] to Reg.File[Rt] and store result in Reg.File [Rd]. 
No overflow exception is generated. 
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And: 
and Rd, Rs, Rt # RF[Rd] = RF[Rs] AND RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100100

Bitwise logically AND contents of Register File[Rs] with Reg.File[Rt] and store result in 
Reg.File[Rd]. 

And Immediate: 
andi Rt, Rs, Imm # RF[Rt] = RF[Rs] AND Imm 
 

Op-Code  Rs Rt  Imm   
001100ssssstttttiiiiiiiiiiiiiiii

Bitwise logically AND  contents of Reg.File[Rs] wih zero-extended Imm value and store 
result in Reg.File[Rt]. 

Branch Instructions
The immediate field contains a signed 16-bit value specifying the number of words away 
from the current program counter address to the location symbolically specified by the 
label. Since MIPS uses byte addressing, this word offset value in the immediate field is 
shifted left by two bits and added to the current contents of the program counter when a 
branch is taken. The SPIM assembler generates the offset from the address of the branch 
instruction. Whereas the assembler for an actual MIPS processor will generate the offset 
from the address of the instruction following the branch instruction since the program 
counter will have already been incremented by the time the branch instruction is 
executed.  

Branch if Equal: 
Beq Rs, Rt, Label # If (RF[Rs] == RF[Rt] )then PC = PC + Imm<< 2 
 

Op-Code  Rs Rt  Imm   
000100ssssstttttiiiiiiiiiiiiiiii

If Reg.File[Rs] is equal to Reg.File[Rt] then branch to label.  
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Branch if Greater Than or Equal to Zero: 
bgez Rs, Label # If (RF[Rs] >= RF[0]) then PC = PC + Imm<< 2 
 

Op-Code  Rs code  Imm   
000001sssss00001iiiiiiiiiiiiiiii

If Reg.File[Rs] is greater than or equal to zero, then branch to label.  

Branch if Greater Than or Equal to Zero and Link: 
bgezal Rs, Label  # If( RF[Rs] >= RF[0] )then  
 {RF[$ra] = PC; 
 PC = PC + Imm<< 2 } 
 

Op-Code  Rs code  Imm   
000001sssss10001iiiiiiiiiiiiiiii

If Reg.File[Rs] is greater than or equal to zero, then save the return address in 
Reg.File[$rs] and branch to label. (Used to make conditional function calls) 

Branch if Greater Than Zero: 
bgtz Rs, Label # If (RF[Rs] > RF[0] ) then PC = PC + Imm<< 2 
 

Op-Code  Rs Rt  Imm   
000111sssss00000iiiiiiiiiiiiiiii

If Reg.File[Rs] is greater than zero, then branch to label.  

Branch if Less Than or Equal to Zero: 
blez Rs, Label # If (RF[Rs] <= RF[0]) then PC = PC + Imm<< 2 
 

Op-Code  Rs Rt  Imm   
000110sssss00000iiiiiiiiiiiiiiii

If Reg.File[Rs] is less than or equal to zero, then branch to label.  
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Branch if Less Than Zero and Link: 
bltzal Rs, Label   # If RF[Rs] < RF[0] then  
 {RF[$ra] = PC; 
 PC = PC + Imm<< 2 } 
 Op-Code  Rs code  Imm   
000001sssss10000iiiiiiiiiiiiiiii

If Reg.File[Rs] is less than zero then save the return address in Reg.File[$rs] and branch 
to label.  

Branch if Less Than Zero: 
bltz Rs, Label # If RF[Rs] < RF[0] then PC = PC + Imm<< 2 
 

Op-Code  Rs code  Imm   
000001sssss00000iiiiiiiiiiiiiiii

If Reg.File[Rs] is less than zero then branch to label.  

Branch if Not Equal: 
bne Rs, Rt, Label # If RF[Rs] != RF[Rt] then PC = PC + Imm<< 2 
 

Op-Code  Rs Rt  Imm   
000101ssssstttttiiiiiiiiiiiiiiii

If Reg.File[Rs] is not equal to Reg.File[Rt] then branch to label.  

Divide: 
div Rs, Rt # Low = Quotient ( RF[Rs] / RF[Rt] )  
 # High = Remainder ( RF[Rs] / RF[Rt] ) 
 

Op-Code  Rs Rt  Function Code 
000000sssssttttt0000000000011010

Divide the contents of Reg.File[Rs] by Reg.File[Rt]. Store the quotient in the LOW 
register, and store the remainder in the HIGH register. The sign of the quotient will be 
negative if the operands are of opposite signs. The sign of the remainder will be the same 
as the sign of the numerator, Reg.File[Rs]. No overflow exception occurs under any 
circumstances. It is the programmer’s responsibility to test if the divisor is zero before 
executing this instruction, because the results are undefined when the divisor is zero. 
For some implementations of the MIPS architecture, it takes 38 clock cycles to execute 
the divide instruction. 
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Divide Unsigned: 
divu Rs, Rt # Low = Quotient ( RF[Rs] / RF[Rt] )  
 # High = Remainder ( RF[Rs] / RF[Rt] ) 
 

Op-Code  Rs Rt  *Function Code 
000000sssssttttt0000000000011011

Divide the contents of Reg.File[Rs] by Reg.File[Rt], treating both operands as unsigned 
values. Store the quotient in the LOW register, and store the remainder in the HIGH 
register. The quotient and remainder will always be positive values. No overflow 
exception occurs under any circumstances. It is the programmer’s responsibility to test if 
the divisor is zero before executing this instruction, because the results are undefined 
when the divisor is zero. For some implementations of the MIPS architecture, it takes 38 
clock cycles to execute the divide instruction. 

Jump: 
j Label   # PC = PC(31:28) | Imm<< 2 
 

Op-Code     Imm   
000010iiiiiiiiiiiiiiiiiiiiiiiiii
Load the PC with an address formed by concatenating the first 4-bits of the current PC 
with the value in the 26-bit immediate field shifted left 2-bits. 
 

Jump and Link: (Use this instructions to make function calls. 
jal Label   # RF[$ra] = PC;  PC = PC(31:28) | Imm<< 2 
 
Op-Code      Imm   
000010iiiiiiiiiiiiiiiiiiiiiiiiii

Save the current value of the Program Counter (PC) in Reg.File[$ra], and load the PC 
with an address formed by concatenating the first 4-bits of the current PC with the value 
in the 26-bit immediate field shifted left 2-bits. 
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Jump and Link Register: (Use this instructions to make function calls. 
jalr Rd, Rs   # RF[Rd] = PC;  PC = RF[Rs] 
 
Op-Code  Rs  Rd *Function Code 
000000sssss00000ddddd00000001001

Save the current value of the Program Counter (PC) in Reg.File[Rd] and load the PC with  
the address that is in Reg.File[Rs]. A programmer must insure a valid address has been 
loaded into Reg.File[Rs] before executing this instruction. 

Jump Register: (Use this instructions to return from a function call.) 
jr Rs    # PC = RF[Rs] 
 
Op-Code  Rs   *Function Code 
000000sssss000000000000000001000
Load the PC with an the address that is in Reg.File[Rs].  

Load Byte: 
lb Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs]  + Offset] 
 

Op-Code  Rs Rt  Offset  
100000ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
An 8-bit byte is read from memory at the effective address, sign extended and loaded into 
Reg.File[Rt].  

Load Byte Unsigned: 
lbu Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs] + Offset] 
 

Op-Code  Rs Rt  Offset  
100100ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
An 8-bit byte is read from memory at the effective address, zero extended and loaded into 
Reg.File[Rt].  
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Load Halfword: 
lh Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs] + Offset] 
 

Op-Code  Rs Rt  Offset  
100001ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
A 16-bit half word is read from memory at the effective address, sign extended and 
loaded into Reg.File[Rt]. If the effective address is an odd number, an address error 
exception occurs. 

Load Halfword Unsigned: 
lhu Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs] + Offset] 
 

Op-Code  Rs Rt  Offset  
100101ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
A 16-bit half word is read from memory at the effective address, zero extended and 
loaded into Reg.File[Rt]. If the effective address is an odd number, an address error 
exception occurs. 

Load Upper Immediate: ( This instruction in conjunction with an OR immediate 
instruction is used to implement the Load Address pseudo instruction - la  Label) 
lui Rt, Imm # RF[Rt] = Imm<<16 | 0x0000 
 

Op-Code   Rt  Imm  
00111100000tttttiiiiiiiiiiiiiiii

The 16-bit immediate value is shifted left 16-bits concatenated with 16 zeros and loaded 
into Reg.File[Rt]. 
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Load Word: 
lw Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs]  + Offset] 
 

Op-Code  Rs Rt  Offset  
100011ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
A 32-bit word is read from memory at the effective address and loaded into Reg.File[Rt]. 
If the least two significant bits of the effective address are not zero, an address error 
exception occurs. There are four bytes in a word, so word addresses must be binary 
numbers that are a multiple of four, otherwise an address error exception occurs. 

Load Word Left: 
lwl Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs]  + Offset] 
 

Op-Code  Rs Rt  Offset  
100010ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective byte 
address. From one to four bytes will be loaded left justified into Reg.File[Rt] beginning 
with the effective byte address then it proceeds toward a lower order byte in memory, 
until it reaches the lowest order byte of the word in memory. This instruction can be used 
in combination with the LWR instruction to load a register with four consecutive bytes 
from memory, when the bytes cross a boundary between two words.  

Load Word Right:  
lwr Rt, offset(Rs) # RF[Rt] = Mem[RF[Rs]  + Offset] 
 

Op-Code  Rs Rt  Offset  
100110ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective byte 
address. From one to four bytes will be loaded right justified into Reg.File[Rt] beginning 
with the effective byte address then it proceeds toward a higher order byte in memory, 
until it reaches the high order byte of the word in memory. This instruction can be used in 
combination with the LWL instruction to load a register with four consecutive bytes from 
memory, when the bytes cross a boundary between two words. 
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Move From High: 
mfhi   Rd    # RF[Rd] = HIGH 
 
Op-Code    Rd Function Code 
0000000000000000ddddd00000010000
Load Reg.File[Rd] with a copy of the value currently in special register HIGH. 

Move From Low: 
mflo   Rd    # RF[Rd] = LOW 
 
Op-Code    Rd Function Code 
0000000000000000ddddd00000010010
Load Reg.File[Rd] with a copy of the value currently in special register LOW. 

Move to High: 
mthi   Rs    # HIGH = RF[Rs]  
 
Op-Code  Rs   Function Code 
000000sssss000000000000000010001
Load special register HIGH with a copy of the value currently in Reg.File[Rs]. 

Move to Low: 
mtlo   Rs    # LOW = RF[Rs] 
 
Op-Code  Rs   Function Code 
000000sssss000000000000000010011
Load special register LOW with a copy of the value currently in Reg.File[Rs]. 
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Multiply: 
mult Rs, Rt # High |Low = RF[Rs] * RF[Rt]  
 

Op-Code  Rs Rt  Function Code 
000000sssssttttt0000000000011000

Multiply the contents of Reg.File[Rs] by Reg.File[Rt] and store the lower 32-bits of the 
product in the LOW register, and store the upper 32-bits of the product in the HIGH 
register. The two operands are treated as two’s complement numbers, the 64-bit product 
is negative if the signs of the two operands are different. No overflow exception occurs 
under any circumstances. For some implementations of the MIPS architecture it takes 32 
clock cycles to execute the multiply instruction.  

Multiply Unsigned: 
multu  Rs, Rt # High |Low = RF[Rs] * RF[Rt] 
 

Op-Code  Rs Rt  Function Code 
000000sssssttttt0000000000011001

Multiply the contents of Reg.File[Rs] by Reg.File[Rt] and store the lower 32-bits of the 
product in the LOW register, and store the upper 32-bits of the product in the HIGH 
register. The two operands are treated as unsigned positive values. No overflow exception 
occurs under any circumstances. For some implementations of the MIPS architecture it 
takes 32 clock cycles to execute the multiply instruction. 

NOR: 
nor Rd, Rs, Rt # RF[Rd] = RF[Rs]  NOR  RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100111

Bit wise logically NOR contents of Register File[Rs] with Reg.File[Rt] and store result in 
Reg.File[Rd]. 
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OR: 
or Rd, Rs, Rt # RF[Rd] = RF[Rs]  OR  RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100101

Bit wise logically OR contents of Register File[Rs] with Reg.File[Rt] and store result in 
Reg.File[Rd]. 

OR Immediate: 
ori Rt, Rs, Imm # RF[Rt] = RF[Rs]  OR  Imm 
 

Op-Code  Rs Rt  Imm   
001101ssssstttttiiiiiiiiiiiiiiii

Bit wise logically OR  contents of Reg.File[Rs] wih zero extended Imm value and store 
result in Reg.File[Rt]. 

Store Byte: 
sb Rt, offset(Rs) # Mem[RF[Rs]  + Offset] = RF[Rt]  
 

Op-Code  Rs Rt  Offset  
101000ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
The least significant 8-bit byte in Reg.File[Rt] are stored in memory at the effective 
address. 

Store Halfword: 
sh Rt, offset(Rs) # Mem[RF[Rs]  + Offset] = RF[Rt]  
 

Op-Code  Rs Rt  Offset  
101001ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
The least significant 16-bits in Reg.File[Rt] are stored in memory at the effective address. 
If the effective address is an odd number, then an address error exception occurs. 
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Shift Left Logical: 
sll Rd, Rt, sa # RF[Rd] = RF[Rt] << sa 
 

Op-Code   Rt Rd sa Function Code 
00000000000tttttddddd00000000000

The contents of Reg.File[Rt] are shifted left sa-bits & the result is stored in Reg.File[Rd]. 

Shift Left Logical Variable: 
sllv Rd, Rt, Rs # RF[Rd] = RF[Rt] << RF[Rs] amount 
 

Op-Code  Rs Rt Rd  Function Code 
000000ssssstttttddddd00000000100

The contents of Reg.File[Rt] are shifted left by the number of bits specified by the low 
order 5-bits of Reg.File[Rs], and the result is stored in Reg.File[Rd]. 

Set on Less Than:  (Used in branch macro instructions) 
slt Rd, Rs, Rt # if (RF[Rs]  < RF[Rt] ) then RF[Rd] =1 else RF[Rd] = 0 
 

Op-Code  Rs Rt Rd  Function Code 
000000ssssstttttddddd00000101010

If the contents of Reg.File[Rs] are less than the contents of Reg.File[Rt], then 
Reg.File[Rd] is set to one, otherwise Reg.File[Rd] is set to zero; assuming the two’s 
complement number system representation. 

Set on Less Than Immediate: (Used in branch macro instructions) 
slti Rt, Rs, Imm # if (RF[Rs]  < Imm ) then RF[Rt] =1 else RF[Rt] = 0 
 

Op-Code  Rs Rt  Imm   
001010ssssstttttiiiiiiiiiiiiiiii

If the contents of Reg.File[Rs] are less than the sign-extended immediate value then 
Reg.File[Rt] is set to one, otherwise Reg.File[Rt] is set to zero; assuming the two’s 
complement number system representation. 
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Set on Less Than Immediate Unsigned:  (Used in branch macro instructions) 
sltiu Rt, Rs, Imm # if (RF[Rs]  < Imm ) then RF[Rt] =1 else RF[Rt] = 0 
 

Op-Code  Rs Rt  Imm   
001011ssssstttttiiiiiiiiiiiiiiii

If the contents of Reg.File[Rs] are less than the sign-extended immediate value, then 
Reg.File[Rt] is set to one, otherwise Reg.File[Rt] is set to zero; assuming an unsigned 
number  representation (only positive values). 

Set on Less Than Unsigned:  (Used in branch macroinstructions) 
sltu Rd, Rs, Rt # if (RF[Rs]  < RF[Rt] ) then RF[Rd] =1 else RF[Rd] = 0 
 

Op-Code  Rs Rt Rd  Function Code 
000000ssssstttttddddd00000101010

If the contents of Reg.File[Rs] are less than the contents of Reg.File[Rt], then 
Reg.File[Rd] is set to one, otherwise Reg.File[Rd] is set to zero; assuming an unsigned 
number  representation (only positive values). 

Shift Right Arithmetic: 
sra Rd, Rt, sa # RF[Rd] = RF[Rt] >> sa 
 

Op-Code   Rt Rd sa Function Code 
00000000000tttttddddd00000000011

The contents of Reg.File[Rt] are shifted right sa-bits, sign-extending the high order bits, 
and the result is stored in Reg.File[Rd]. 

Shift Right Arithmetic Variable: 
srav Rd, Rt, Rs # RF[Rd] = RF[Rt] >> RF[Rs] amount 
 

Op-Code  Rs Rt Rd  Function Code 
000000ssssstttttddddd00000000111

The contents of Reg.File[Rt] are shifted right, sign-extending the high order bits, by the 
number of bits specified by the low order 5-bits of Reg.File[Rs], and the result is stored 
in Reg.File[Rd]. 
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Shift Right Logical: 
srl Rd, Rt, sa # RF[Rd] = RF[Rt] >> sa 
 

Op-Code   Rt Rd sa Function Code 
00000000000tttttddddd00000000010

The contents of Reg.File[Rt] are shifted right sa-bits, inserting zeros into the high order 
bits, the result is stored in Reg.File[Rd]. 

Shift Right Logical Variable: 
srlv Rd, Rt, Rs # RF[Rd] = RF[Rt] >> RF[Rs] amount 
 

Op-Code  Rs Rt Rd  Function Code 
000000ssssstttttddddd00000000110

The contents of Reg.File[Rt] are shifted right, inserting zeros into the high order bits, by 
the number of bits specified by the low order 5-bits of Reg.File[Rs], and the result is 
stored in Reg.File[Rd]. 

Subtract: 
sub Rd, Rs, Rt # RF[Rd] = RF[Rs] - RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100010

Subtract contents of Reg.File[Rt] from Reg.File[Rs] and store result in Reg.File[Rd]. 
If overflow occurs in the two’s complement number system, an exception is generated. 

Subtract Unsigned: 
subu Rd, Rs, Rt # RF[Rd] = RF[Rs] - RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100011

Subtract contents of Reg.File[Rt] from Reg.File[Rs] and store result in Reg.File[Rd]. 
No overflow exception is generated. 
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Store Word: 
sw Rt, offset(Rs) # Mem[RF[Rs]  + Offset] = RF[Rt]  
 

Op-Code  Rs Rt  Offset  
101011ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
The contents of Reg.File[Rt ] are stored in memory at the effective address. If the least 
two significant bits of the effective address are not zero, an address error exception 
occurs. There are four bytes in a word, so word addresses must be binary numbers that 
are a multiple of four, otherwise an address error exception occurs. 

Store Word Left: 
swl Rt, offset(Rs) # Mem[RF[Rs]  + Offset] = RF[Rt]  
 

Op-Code  Rs Rt  Offset  
101010ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
From one to four bytes will be stored left justified into memory beginning with the most 
significant byte in Reg.File[Rt], then it proceeds toward a lower order byte in memory, 
until it reaches the lowest order byte of the word in memory. This instruction can be used 
in combination with the SWR instruction, to store the contents of a register into four 
consecutive bytes of memory, when the bytes cross a boundary between two words. 

Store Word Right: 
swr Rt, offset(Rs) # Mem[RF[Rs]  + Offset] = RF[Rt]  
 

Op-Code  Rs Rt  Offset  
101110ssssstttttiiiiiiiiiiiiiiii

The 16-bit offset is sign extended and added to Reg.File[Rs] to form an effective address. 
From one to four bytes will be stored right justified into memory beginning with the least 
significant byte in Reg.File[Rt], then it proceeds toward a higher order byte in memory, 
until it reaches the highest order byte of the word in memory. This instruction can be 
used in combination with the SWL instruction, to store the contents of a register into four 
consecutive bytes of memory, when the bytes cross a boundary between two words. 
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System Call:  (Used to call system services to perform I/O) 
syscall 

Op-Code      Function Code 
00000000000000000000000000001100

A user program exception is generated. 

Exclusive OR: 
xor Rd, Rs, Rt # RF[Rd] = RF[Rs]  XOR  RF[Rt] 
 

Op-Code  Rs Rt Rd Function Code 
000000ssssstttttddddd00000100110

Bit wise logically Exclusive-OR contents of Register File[Rs] with Reg.File[Rt] and store 
result in Reg.File[Rd]. 

Exclusive OR Immediate: 
xori Rt, Rs, Imm # RF[Rt] = RF[Rs]  XOR  Imm 
 

Op-Code  Rs Rt  Imm   
001110ssssstttttiiiiiiiiiiiiiiii

Bit wise logically Exclusive-OR contents of Reg.File[Rs] with zero extended Imm value 
and store result in Reg.File[Rt]
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APPENDIX D

Macro Instructions 
 
Name    Actual Code           Space/Time 

 
Absolute Value: 
abs Rd, Rs   addu Rd, $0, Rs    3/3 

bgez Rs, 1 
sub   Rd, $0, Rs 
 

Branch if Equal to Zero: 
beqz  Rs, Label beq Rs, $0, Label   1/1 

Branch if Greater than or Equal : 
bge Rs, Rt, Label slt   $at, Rs, Rt    2/2 

beq $at, $0, Label 
If  Reg.File[Rs]  > = Reg.File[Rt] branch to Label 
Used to compare values represented in the two's complement number system. 
 
Branch if Greater than or Equal Unsigned 
bgeu   Rs, Rt, Label sltu $at, Rs, Rt       2/2 

beq $at, $0, Label 
If  Reg.File[Rs]  > = Reg.File[Rt] branch to Label 
Used to compare addresses (unsigned values). 
 
Branch if Greater Than: 
bgt  Rs, Rt, Label slt   $at, Rt, Rs      2/2 

bne $at, $0, Label 
If  Reg.File[Rs]  >  Reg.File[Rt] branch to Label 
Used to compare values represented in the two's complement number system. 
 
Branch if Greater Than Unsigned: 
bgtu Rs, Rt, Label sltu $at, Rt, Rs      2/2 

bne $at, $0, Label 
If  Reg.File[Rs]  >  Reg.File[Rt] branch to Label 
Used to compare addresses (unsigned values). 
 
Branch if Less Than or Equal: 
ble  Rs, Rt, Label slt   $at, Rt, Rs        2/2 

beq $at, $0, Label 
If  Reg.File[Rs]  < = Reg.File[Rt] branch to Label 
Used to compare values represented in the two's complement number system. 
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Branch if Less Than or Equal Unsigned: 
bleu  Rs, Rt, Label sltu $at, Rt, Rs     2/2 

beq $at, $0, Label 
If  Reg.File[Rs]  < = Reg.File[Rt] branch to Label 
Used to compare addresses (unsigned values). 
 
Branch if Less Than: 
blt  Rs, Rt, Label slt   $at, Rs, Rt         2/2 

bne $at, $0, Label 
If  Reg.File[Rs]  <  Reg.File[Rt] branch to Label 
Used to compare values represented in the two's complement number system 
 
Branch if Less Than Unsigned:    
bltu        Rs, Rt, Label sltu $at, Rs, Rt        2/2 

bne $at, $0, Label 
If  Reg.File[Rs]  <  Reg.File[Rt] branch to Label 
Used to compare addresses (unsigned values). 
 
Branch if Not Equal to Zero: 
bnez        Rs, Label bne Rs, $0, Label    1/1 

Branch Unconditional 
b Label bgez $0, Label    1/1 

Divide: 
div  Rd, Rs, Rt bne Rt, $0, ok    4/41 

break $0 
ok: div Rs, Rt 

mflo Rd 
 
Divide Unsigned: 
divu  Rd, Rs, Rt bne Rt, $0, ok    4/41 

break $0 
ok: divu Rs, Rt 

mflo Rd 
 
Load Address :        
la  Rd, Label lui $at, Upper 16-bits of Label 2/2 

ori Rd, $at, Lower 16-bits of Label 
Used to initialize pointers. 
 
Load Immediate:  
li  Rd,  value   lui $at, Upper 16-bits of value  2/2 

ori Rd, $at, Lower 16-bits of value 
Initialize registers with negative constants and values greater than 32767. 
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Load Immediate: 
li  Rd,  value   ori Rt, $0, value      1/1 
Initialize registers with positive constants less than 32768. 

Move: 
move Rd, Rs   addu Rd, $0, Rs   1/1 

mul  Rd, Rs, Rt  mult Rs, Rt   2/33 
mflo Rd 

 
Multiply (with overflow exception): 
mulo Rd, Rs, Rt  mult Rs, Rt    7/37 

mfhi $at   
mflo Rd 
sra Rd, Rd, 31 
beq $at, Rd, ok 
break $0 

ok: mflo Rd 
 

Multiply Unsigned (with overflow exception): 
mulou Rd, Rs, Rt  multu Rs, Rt         5/35 

mfhi $at 
beq $at, $0, ok 

ok: break $0 
mflo Rd 

Negate: 
neg  Rd, Rs   sub Rd, $0, Rs    1/1 
Two's complement negation. An exception is generated when there 
 is an attempt to negate the most negative value: 2,147,483,648. 
 
Negate Unsigned: 
negu  Rd, Rs   subu Rd, $0, Rs     1/1 

Nop: 
nop or $0, $0, $0 1/1 
Used to solve problems with hazards in the pipeline. 
 
Not: 
not        Rd, Rs  nor Rd, Rs, $0       1/1 
A bit-wise Boolean complement. 
 
Remainder: 
rem Rd, Rs, Rt  bne Rt, $0, 8                     4/40 

break $0 
div Rs, Rt 
mfhi Rd 
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Remainder Unsigned: 
remu  Rd, Rs, Rt  bne Rt, $0, ok     4/40 

break $0  
ok: divu Rs, Rt 

mfhi Rd 
 
Rotate Left Variable: 
rol  Rd, Rs, Rt  subu $at, $0, Rt     4/4 

srlv $at, Rs, $at 
sllv Rd, Rs, Rt 
or Rd, Rd, $at 

The lower 5-bits in Rt specifys the shift amount. 
 
Rotate Right Variable: 
ror  Rd, Rs, Rt  subu $at, $0, Rt   4/4 

sllv $at, Rs, $at 
srlv Rd, Rs, Rt 
or Rd, Rd, $at 

 
Rotate Left Constant: 
rol        Rd, Rs, sa  srl $at, Rs, 32-sa    3/3 

sll Rd, Rs, sa 
or Rd, Rd, $at 

 
Rotate Right Constant: 
ror  Rd, Rs, sa  sll $at, Rs, 32-sa            3/3 

srl Rd, Rs, sa 
or Rd, Rd, $at 

Set if Equal: 
seq  Rd, Rs, Rt  beq Rt, Rs, yes      4/4 

ori Rd, $0, 0 
beq $0, $0, skip 

yes: ori Rd, $0, 1 
skip: 

Set if Greater Than or Equal: 
sge  Rd, Rs, Rt  bne Rt, Rs, yes   4/4 

ori Rd, $0, 1 
beq $0, $0, skip 

yes: slt Rd, Rt, Rs 
skip: 

Set if Greater Than or Equal Unsigned: 
sgeu        Rd, Rs, Rt  bne Rt, Rs, yes           4/4 

ori Rd, $0, 1 
beq $0, $0, skip 

yes: sltu Rd, Rt, Rs 
skip: 
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Set if Greater Than: 
sgt  Rd, Rs, Rt  slt Rd, Rt, Rs                 1/1 
 
Set if Greater Than Unsigned: 
sgtu Rd, Rs, Rt  sltu Rd, Rt, Rs     1/1 

Set if Less Than or Equal: 
sle Rd, Rs, Rt   bne Rt, Rs, yes    4/4 

ori Rd, $0, 1 
beq $0, $0, skip 

yes: slt Rd, Rs, Rt 
skip: 

Set if Less Than or Equal Unsigned: 
sleu  Rd, Rs, Rt  bne Rt, Rs, yes      4/4 

ori Rd, $0, 1 
beq $0, $0, skip 

yes: sltu Rd, Rs, Rt 
skip: 

Set if Not Equal: 
sne  Rd, Rs, Rt  beq Rt, Rs, yes      4/4 

ori Rd, $0, 1 
beq $0, $0, skip 

yes: ori Rd, $0, 0 
skip: 

Unaligned Load Halfword Unsigned:   
ulh  Rd, 3(Rs)   lb Rd, 4(Rs)      4/4 

lbu $at, 3(Rs) 
sll Rd, Rd, 8 
or Rd, Rd, $at 

 
Unaligned Load Halfword: 
ulhu  Rd, 3(Rs) lbu Rd, 4(Rs)      4/4 

lbu $at, 3(Rs) 
sll Rd, Rd, 8 
or Rd, Rd, $at 
 

Unaligned Load Word: 
ulw  Rd, 3(Rs   lwl Rd, 6(Rs)           2/2 

lwr Rd, 3(Rs) 
Unaligned Store Halfword: 
ush Rd, 3(Rs) sb Rd, 3(Rs)        3/3 

srl $at, Rd, 8 
sb $at, 4(Rs) 

Unaligned Store Word: 
usw  Rd, 3(Rs)  swl Rd, 6(Rs)     2/2 

swr Rd, 3(Rs) 
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APPENDIX E

A Trap Handler 
 
# SPIM S20 MIPS simulator. 
# The default trap handler for spim. 
#
# Copyright (C) 1990-1995 James Larus, larus@cs.wisc.edu. 
# ALL RIGHTS RESERVED. 
#
# SPIM is distributed under the following conditions: 
#
# You may make copies of SPIM for your own use and modify those copies. 
#
# All copies of SPIM must retain my name and copyright notice. 
#
# You may not sell SPIM or distributed SPIM in conjunction with a commercial 
# product or service without the expressed written consent of James Larus. 
#
# Define the exception handling code.  This must go first! 
 .kdata 
__m1_: .asciiz "  Exception " 
__m2_: .asciiz " occurred and ignored\n" 
__e0_:  .asciiz "  [Interrupt] " 
__e1_:  .asciiz "" 
__e2_:  .asciiz "" 
__e3_:  .asciiz "" 
__e4_:  .asciiz "  [Unaligned address in inst/data fetch] " 
__e5_:  .asciiz "  [Unaligned address in store] " 
__e6_:  .asciiz "  [Bad address in text read] " 
__e7_:  .asciiz "  [Bad address in data/stack read] " 
__e8_:  .asciiz "  [Error in syscall] " 
__e9_:  .asciiz "  [Breakpoint] " 
__e10_: .asciiz "  [Reserved instruction] " 
__e11_: .asciiz "" 
__e12_: .asciiz "  [Arithmetic overflow] " 
__e13_: .asciiz "  [Inexact floating point result] " 
__e14_: .asciiz "  [Invalid floating point result] " 
__e15_: .asciiz "  [Divide by 0] " 
__e16_: .asciiz "  [Floating point overflow] " 
__e17_: .asciiz "  [Floating point underflow] " 
__excp: .word __e0_,__e1_,__e2_,__e3_,__e4_,__e5_,__e6_,__e7_,__e8_,__e9_ 
 .word __e10_,__e11_,__e12_,__e13_,__e14_,__e15_,__e16_,__e17_ 
s1:  .word 0 
s2:  .word 0 
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.ktext 0x80000080 
 .set noat 
 # Because we are running in the kernel, we can use $k0/$k1 without 
 # saving their old values. 
 move  $k1, $at  # Save $at 
 .set at 
 sw $v0, s1   # Not re-entrent and we can't trust $sp 
 sw  $a0, s2 
 mfc0  $k0, $13  # Cause 
 sgt  $v0, $k0, 0x44  # ignore interrupt exceptions 
 bgtz  $v0, ret 
 addu  $0, $0, 0 
 li  v0, 4   # syscall 4 (print_str) 
 la  $a0, __m1_ 
 syscall 
 li  $v0, 1   # syscall 1 (print_int) 
 srl  $a0, $k0, 2  # shift Cause reg 
 syscall 
 li $v0, 4   # syscall 4 (print_str) 
 lw  $a0, __excp($k0) 
 syscall 
 bne  $k0, 0x18, ok_pc  # Bad PC requires special checks 
 mfc0  $a0, $14  # EPC 
 and  $a0, $a0, 0x3   # Is EPC word-aligned? 
 beq  $a0, 0, ok_pc 
 li  $v0, 10  # Exit on really bad PC (out of text) 
 syscall 
ok_pc: 
 li $v0,4   # syscall 4 (print_str) 
 la  $a0, __m2_ 
 syscall 
 mtc0  $0, $13  # Clear Cause register 
ret: 
 lw  $v0, s1 
 lw  $a0, s2 
 mfc0  $k0, $14  # EPC 
 .set noat 
 move  $at, $k1  # Restore $at 
 .set at 
 rfe    # Return from exception handler 
 addiu  $k0, $k0, 4   # Return to next instruction 
 jr $k0 
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# Standard startup code.  Invoke the routine main with no arguments. 
 

.text 
 .globl __start 
__start:  
 lw  $a0, 0($sp)  # argc 
 addiu  $a1, $sp, 4   # argv 
 addiu  $a2, $a1, 4   # envp 
 sll  $v0, $a0, 2 
 addu  $a2, $a2, $v0 
 jal  main 
 li  $v0 10 
 syscall    # syscall 10 (exit) 
 


	MIPS Assembly Language Programming
	Preface
	Contents
	Related Web Sites
	Ch1 MIPS Architecture
	Ch2 Pseudocode
	Ch3 Number Systems
	Ch4 PCSpim: MIPS Simulator
	Ch5 Algorithm Development
	Ch6 Function Calls using Stack
	Ch7 Reentrant Functions
	Ch8 Exception Processing
	Ch9 Pipelined Implementation
	Ch10 Embedded Processors
	AppA Quick Reference
	AppB ASCII Codes
	AppC Integer Instruction Set
	AppD Macro Instructions
	AppE Trap Handler


