/* * Copyright (c) 1988, 1991 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)rtsock.c 7.18 (Berkeley) 6/27/91 * $Id: rtsock.c,v 1.3 1993/10/16 17:43:43 rgrimes Exp $ */ #include "param.h" #include "systm.h" #include "mbuf.h" #include "proc.h" #include "socket.h" #include "socketvar.h" #include "domain.h" #include "protosw.h" #include "af.h" #include "if.h" #include "route.h" #include "raw_cb.h" #include "machine/mtpr.h" struct sockaddr route_dst = { 2, PF_ROUTE, }; struct sockaddr route_src = { 2, PF_ROUTE, }; struct sockproto route_proto = { PF_ROUTE, }; /*ARGSUSED*/ route_usrreq(so, req, m, nam, control) register struct socket *so; int req; struct mbuf *m, *nam, *control; { register int error = 0; register struct rawcb *rp = sotorawcb(so); int s; if (req == PRU_ATTACH) { MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK); if (so->so_pcb = (caddr_t)rp) bzero(so->so_pcb, sizeof(*rp)); } if (req == PRU_DETACH && rp) { int af = rp->rcb_proto.sp_protocol; if (af == AF_INET) route_cb.ip_count--; else if (af == AF_NS) route_cb.ns_count--; else if (af == AF_ISO) route_cb.iso_count--; route_cb.any_count--; } s = splnet(); error = raw_usrreq(so, req, m, nam, control); rp = sotorawcb(so); if (req == PRU_ATTACH && rp) { int af = rp->rcb_proto.sp_protocol; if (error) { free((caddr_t)rp, M_PCB); splx(s); return (error); } if (af == AF_INET) route_cb.ip_count++; else if (af == AF_NS) route_cb.ns_count++; else if (af == AF_ISO) route_cb.iso_count++; rp->rcb_faddr = &route_src; route_cb.any_count++; soisconnected(so); so->so_options |= SO_USELOOPBACK; } splx(s); return (error); } #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) /*ARGSUSED*/ route_output(m, so) register struct mbuf *m; struct socket *so; { register struct rt_msghdr *rtm = 0; register struct rtentry *rt = 0; struct rtentry *saved_nrt = 0; struct sockaddr *dst = 0, *gate = 0, *netmask = 0, *genmask = 0; struct sockaddr *ifpaddr = 0, *ifaaddr = 0; caddr_t cp, lim; int len, error = 0; struct ifnet *ifp = 0; struct ifaddr *ifa = 0; struct ifaddr *ifaof_ifpforaddr(), *ifa_ifwithroute(); #define senderr(e) { error = e; goto flush;} if (m == 0 || m->m_len < sizeof(long)) return (ENOBUFS); if ((m = m_pullup(m, sizeof(long))) == 0) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) senderr(EINVAL); R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == 0) senderr(ENOBUFS); m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) senderr(EPROTONOSUPPORT); rtm->rtm_pid = curproc->p_pid; lim = len + (caddr_t) rtm; cp = (caddr_t) (rtm + 1); if (rtm->rtm_addrs & RTA_DST) { dst = (struct sockaddr *)cp; ADVANCE(cp, dst); } else senderr(EINVAL); if ((rtm->rtm_addrs & RTA_GATEWAY) && cp < lim) { gate = (struct sockaddr *)cp; ADVANCE(cp, gate); } if ((rtm->rtm_addrs & RTA_NETMASK) && cp < lim) { netmask = (struct sockaddr *)cp; ADVANCE(cp, netmask); } if ((rtm->rtm_addrs & RTA_GENMASK) && cp < lim) { struct radix_node *t, *rn_addmask(); genmask = (struct sockaddr *)cp; ADVANCE(cp, genmask); t = rn_addmask(genmask, 1, 2); if (t && Bcmp(genmask, t->rn_key, *(u_char *)genmask) == 0) genmask = (struct sockaddr *)(t->rn_key); else senderr(ENOBUFS); } if ((rtm->rtm_addrs & RTA_IFP) && cp < lim) { ifpaddr = (struct sockaddr *)cp; ADVANCE(cp, ifpaddr); } if ((rtm->rtm_addrs & RTA_IFA) && cp < lim) { ifaaddr = (struct sockaddr *)cp; } switch (rtm->rtm_type) { case RTM_ADD: if (gate == 0) senderr(EINVAL); error = rtrequest(RTM_ADD, dst, gate, netmask, rtm->rtm_flags, &saved_nrt); if (error == 0 && saved_nrt) { rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_refcnt--; saved_nrt->rt_genmask = genmask; } break; case RTM_DELETE: error = rtrequest(RTM_DELETE, dst, gate, netmask, rtm->rtm_flags, (struct rtentry **)0); break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: rt = rtalloc1(dst, 0); if (rt == 0) senderr(ESRCH); if (rtm->rtm_type != RTM_GET) { if (Bcmp(dst, rt_key(rt), dst->sa_len) != 0) senderr(ESRCH); if (rt->rt_nodes->rn_dupedkey && (netmask == 0 || Bcmp(netmask, rt_mask(rt), netmask->sa_len))) senderr(ETOOMANYREFS); } switch(rtm->rtm_type) { case RTM_GET: dst = rt_key(rt); len = sizeof(*rtm); ADVANCE(len, dst); rtm->rtm_addrs |= RTA_DST; if (gate = rt->rt_gateway) { ADVANCE(len, gate); rtm->rtm_addrs |= RTA_GATEWAY; } else rtm->rtm_addrs &= ~RTA_GATEWAY; if (netmask = rt_mask(rt)) { ADVANCE(len, netmask); rtm->rtm_addrs |= RTA_NETMASK; } else rtm->rtm_addrs &= ~RTA_NETMASK; if (genmask = rt->rt_genmask) { ADVANCE(len, genmask); rtm->rtm_addrs |= RTA_GENMASK; } else rtm->rtm_addrs &= ~RTA_GENMASK; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { if (rt->rt_ifp == 0) goto badif; for (ifa = rt->rt_ifp->if_addrlist; ifa && ifa->ifa_addr->sa_family != AF_LINK; ifa = ifa->ifa_next){} if (ifa && rt->rt_ifa) { ifpaddr = ifa->ifa_addr; ADVANCE(len, ifpaddr); ifaaddr = rt->rt_ifa->ifa_addr; ADVANCE(len, ifaaddr); rtm->rtm_addrs |= RTA_IFP | RTA_IFA; } else { badif: ifpaddr = 0; rtm->rtm_addrs &= ~(RTA_IFP | RTA_IFA); } } if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == 0) senderr(ENOBUFS); Bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } rtm->rtm_msglen = len; rtm->rtm_flags = rt->rt_flags; rtm->rtm_rmx = rt->rt_rmx; cp = (caddr_t) (1 + rtm); len = ROUNDUP(dst->sa_len); Bcopy(dst, cp, len); cp += len; if (gate) { len = ROUNDUP(gate->sa_len); Bcopy(gate, cp, len); cp += len; } if (netmask) { len = ROUNDUP(netmask->sa_len); Bcopy(netmask, cp, len); cp += len; } if (genmask) { len = ROUNDUP(genmask->sa_len); Bcopy(genmask, cp, len); cp += len; } if (ifpaddr) { len = ROUNDUP(ifpaddr->sa_len); Bcopy(ifpaddr, cp, len); cp += len; len = ROUNDUP(ifaaddr->sa_len); Bcopy(ifaaddr, cp, len); cp += len; } break; case RTM_CHANGE: if (gate && (gate->sa_len > (len = rt->rt_gateway->sa_len))) senderr(EDQUOT); /* new gateway could require new ifaddr, ifp; flags may also be different; ifp may be specified by ll sockaddr when protocol address is ambiguous */ if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) && (ifp = ifa->ifa_ifp)) ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate, ifp); else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) || (ifa = ifa_ifwithroute(rt->rt_flags, rt_key(rt), gate))) ifp = ifa->ifa_ifp; if (ifa) { register struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa && oifa->ifa_rtrequest) oifa->ifa_rtrequest(RTM_DELETE, rt, gate); rt->rt_ifa = ifa; rt->rt_ifp = ifp; } } if (gate) Bcopy(gate, rt->rt_gateway, len); rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, gate); if (genmask) rt->rt_genmask = genmask; /* * Fall into */ case RTM_LOCK: rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); break; } goto cleanup; default: senderr(EOPNOTSUPP); } flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } cleanup: if (rt) rtfree(rt); { register struct rawcb *rp = 0; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); Free(rtm); } if (rp) rp->rcb_proto.sp_family = 0; /* Avoid us */ if (dst) route_proto.sp_protocol = dst->sa_family; raw_input(m, &route_proto, &route_src, &route_dst); if (rp) rp->rcb_proto.sp_family = PF_ROUTE; } return (error); } rt_setmetrics(which, in, out) u_long which; register struct rt_metrics *in, *out; { #define metric(f, e) if (which & (f)) out->e = in->e; metric(RTV_RPIPE, rmx_recvpipe); metric(RTV_SPIPE, rmx_sendpipe); metric(RTV_SSTHRESH, rmx_ssthresh); metric(RTV_RTT, rmx_rtt); metric(RTV_RTTVAR, rmx_rttvar); metric(RTV_HOPCOUNT, rmx_hopcount); metric(RTV_MTU, rmx_mtu); metric(RTV_EXPIRE, rmx_expire); #undef metric } /* * Copy data from a buffer back into the indicated mbuf chain, * starting "off" bytes from the beginning, extending the mbuf * chain if necessary. */ m_copyback(m0, off, len, cp) struct mbuf *m0; register int off; register int len; caddr_t cp; { register int mlen; register struct mbuf *m = m0, *n; int totlen = 0; if (m0 == 0) return; while (off > (mlen = m->m_len)) { off -= mlen; totlen += mlen; if (m->m_next == 0) { n = m_getclr(M_DONTWAIT, m->m_type); if (n == 0) goto out; n->m_len = min(MLEN, len + off); m->m_next = n; } m = m->m_next; } while (len > 0) { mlen = min (m->m_len - off, len); bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); cp += mlen; len -= mlen; mlen += off; off = 0; totlen += mlen; if (len == 0) break; if (m->m_next == 0) { n = m_get(M_DONTWAIT, m->m_type); if (n == 0) break; n->m_len = min(MLEN, len); m->m_next = n; } m = m->m_next; } out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) m->m_pkthdr.len = totlen; } /* * The miss message and losing message are very similar. */ rt_missmsg(type, dst, gate, mask, src, flags, error) register struct sockaddr *dst; struct sockaddr *gate, *mask, *src; { register struct rt_msghdr *rtm; register struct mbuf *m; int dlen = ROUNDUP(dst->sa_len); int len = dlen + sizeof(*rtm); if (route_cb.any_count == 0) return; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == 0) return; m->m_pkthdr.len = m->m_len = min(len, MHLEN); m->m_pkthdr.rcvif = 0; rtm = mtod(m, struct rt_msghdr *); bzero((caddr_t)rtm, sizeof(*rtm)); /*XXX assumes sizeof(*rtm) < MHLEN*/ rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_addrs = RTA_DST; if (type == RTM_OLDADD || type == RTM_OLDDEL) { rtm->rtm_pid = curproc->p_pid; } m_copyback(m, sizeof (*rtm), dlen, (caddr_t)dst); if (gate) { dlen = ROUNDUP(gate->sa_len); m_copyback(m, len , dlen, (caddr_t)gate); len += dlen; rtm->rtm_addrs |= RTA_GATEWAY; } if (mask) { dlen = ROUNDUP(mask->sa_len); m_copyback(m, len , dlen, (caddr_t)mask); len += dlen; rtm->rtm_addrs |= RTA_NETMASK; } if (src) { dlen = ROUNDUP(src->sa_len); m_copyback(m, len , dlen, (caddr_t)src); len += dlen; rtm->rtm_addrs |= RTA_AUTHOR; } if (m->m_pkthdr.len != len) { m_freem(m); return; } rtm->rtm_errno = error; rtm->rtm_msglen = len; route_proto.sp_protocol = dst->sa_family; raw_input(m, &route_proto, &route_src, &route_dst); } #include "kinfo.h" struct walkarg { int w_op, w_arg; int w_given, w_needed; caddr_t w_where; struct { struct rt_msghdr m_rtm; char m_sabuf[128]; } w_m; #define w_rtm w_m.m_rtm }; /* * This is used in dumping the kernel table via getkinfo(). */ rt_dumpentry(rn, w) struct radix_node *rn; register struct walkarg *w; { register struct sockaddr *sa; int n, error; for (; rn; rn = rn->rn_dupedkey) { int count = 0, size = sizeof(w->w_rtm); register struct rtentry *rt = (struct rtentry *)rn; if (rn->rn_flags & RNF_ROOT) continue; if (w->w_op == KINFO_RT_FLAGS && !(rt->rt_flags & w->w_arg)) continue; #define next(a, l) {size += (l); w->w_rtm.rtm_addrs |= (a); } w->w_rtm.rtm_addrs = 0; if (sa = rt_key(rt)) next(RTA_DST, ROUNDUP(sa->sa_len)); if (sa = rt->rt_gateway) next(RTA_GATEWAY, ROUNDUP(sa->sa_len)); if (sa = rt_mask(rt)) next(RTA_NETMASK, ROUNDUP(sa->sa_len)); if (sa = rt->rt_genmask) next(RTA_GENMASK, ROUNDUP(sa->sa_len)); w->w_needed += size; if (w->w_where == NULL || w->w_needed > 0) continue; w->w_rtm.rtm_msglen = size; w->w_rtm.rtm_flags = rt->rt_flags; w->w_rtm.rtm_use = rt->rt_use; w->w_rtm.rtm_rmx = rt->rt_rmx; w->w_rtm.rtm_index = rt->rt_ifp->if_index; #undef next #define next(l) {n = (l); Bcopy(sa, cp, n); cp += n;} if (size <= sizeof(w->w_m)) { register caddr_t cp = (caddr_t)(w->w_m.m_sabuf); if (sa = rt_key(rt)) next(ROUNDUP(sa->sa_len)); if (sa = rt->rt_gateway) next(ROUNDUP(sa->sa_len)); if (sa = rt_mask(rt)) next(ROUNDUP(sa->sa_len)); if (sa = rt->rt_genmask) next(ROUNDUP(sa->sa_len)); #undef next #define next(s, l) {n = (l); \ if (error = copyout((caddr_t)(s), w->w_where, n)) return (error); \ w->w_where += n;} next(&w->w_m, size); /* Copy rtmsg and sockaddrs back */ continue; } next(&w->w_rtm, sizeof(w->w_rtm)); if (sa = rt_key(rt)) next(sa, ROUNDUP(sa->sa_len)); if (sa = rt->rt_gateway) next(sa, ROUNDUP(sa->sa_len)); if (sa = rt_mask(rt)) next(sa, ROUNDUP(sa->sa_len)); if (sa = rt->rt_genmask) next(sa, ROUNDUP(sa->sa_len)); } return (0); #undef next } kinfo_rtable(op, where, given, arg, needed) int op, arg; caddr_t where; int *given, *needed; { register struct radix_node_head *rnh; int s, error = 0; u_char af = ki_af(op); struct walkarg w; op &= 0xffff; if (op != KINFO_RT_DUMP && op != KINFO_RT_FLAGS) return (EINVAL); Bzero(&w, sizeof(w)); if ((w.w_where = where) && given) w.w_given = *given; w.w_needed = 0 - w.w_given; w.w_arg = arg; w.w_op = op; w.w_rtm.rtm_version = RTM_VERSION; w.w_rtm.rtm_type = RTM_GET; s = splnet(); for (rnh = radix_node_head; rnh; rnh = rnh->rnh_next) { if (rnh->rnh_af == 0) continue; if (af && af != rnh->rnh_af) continue; error = rt_walk(rnh->rnh_treetop, rt_dumpentry, &w); if (error) break; } w.w_needed += w.w_given; if (where && given) *given = w.w_where - where; else w.w_needed = (11 * w.w_needed) / 10; *needed = w.w_needed; splx(s); return (error); } rt_walk(rn, f, w) register struct radix_node *rn; register int (*f)(); struct walkarg *w; { int error; for (;;) { while (rn->rn_b >= 0) rn = rn->rn_l; /* First time through node, go left */ if (error = (*f)(rn, w)) return (error); /* Process Leaf */ while (rn->rn_p->rn_r == rn) { /* if coming back from right */ rn = rn->rn_p; /* go back up */ if (rn->rn_flags & RNF_ROOT) return 0; } rn = rn->rn_p->rn_r; /* otherwise, go right*/ } } /* * Definitions of protocols supported in the ROUTE domain. */ int raw_init(),raw_usrreq(),raw_input(),raw_ctlinput(); extern struct domain routedomain; /* or at least forward */ struct protosw routesw[] = { { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR, raw_input, route_output, raw_ctlinput, 0, route_usrreq, raw_init, 0, 0, 0, } }; int unp_externalize(), unp_dispose(); struct domain routedomain = { PF_ROUTE, "route", 0, 0, 0, routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] };