net/if.h Source
/*
 * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)if.h	7.11 (Berkeley) 3/19/91
 *	$Id: if.h,v 1.5 1993/10/16 17:43:12 rgrimes Exp $
 */

/*
 * Structures defining a network interface, providing a packet
 * transport mechanism (ala level 0 of the PUP protocols).
 *
 * Each interface accepts output datagrams of a specified maximum
 * length, and provides higher level routines with input datagrams
 * received from its medium.
 *
 * Output occurs when the routine if_output is called, with three parameters:
 *	(*ifp->if_output)(ifp, m, dst)
 * Here m is the mbuf chain to be sent and dst is the destination address.
 * The output routine encapsulates the supplied datagram if necessary,
 * and then transmits it on its medium.
 *
 * On input, each interface unwraps the data received by it, and either
 * places it on the input queue of a internetwork datagram routine
 * and posts the associated software interrupt, or passes the datagram to a raw
 * packet input routine.
 *
 * Routines exist for locating interfaces by their addresses
 * or for locating a interface on a certain network, as well as more general
 * routing and gateway routines maintaining information used to locate
 * interfaces.  These routines live in the files if.c and route.c
 */
#ifndef _TIME_ /*  XXX fast fix for SNMP, going away soon */
#ifdef KERNEL
#include "../sys/time.h"
#else
#include 
#endif
#endif

/*
 * Structure defining a queue for a network interface.
 *
 * (Would like to call this struct ``if'', but C isn't PL/1.)
 */

struct ifnet {
	char	*if_name;		/* name, e.g. ``en'' or ``lo'' */
	short	if_unit;		/* sub-unit for lower level driver */
	short	if_mtu;			/* maximum transmission unit */
	short	if_flags;		/* up/down, broadcast, etc. */
	short	if_timer;		/* time 'til if_watchdog called */
	int	if_metric;		/* routing metric (external only) */
	struct	ifaddr *if_addrlist;	/* linked list of addresses per if */
	struct	ifqueue {
		struct	mbuf *ifq_head;
		struct	mbuf *ifq_tail;
		int	ifq_len;
		int	ifq_maxlen;
		int	ifq_drops;
	} if_snd;			/* output queue */
/* procedure handles */
	int	(*if_init)();		/* init routine */
	int	(*if_output)();		/* output routine (enqueue) */
	int	(*if_start)();		/* initiate output routine */
	int	(*if_done)();		/* output complete routine */
	int	(*if_ioctl)();		/* ioctl routine */
	int	(*if_reset)();		/* bus reset routine */
	int	(*if_watchdog)();	/* timer routine */
/* generic interface statistics */
	int	if_ipackets;		/* packets received on interface */
	int	if_ierrors;		/* input errors on interface */
	int	if_opackets;		/* packets sent on interface */
	int	if_oerrors;		/* output errors on interface */
	int	if_collisions;		/* collisions on csma interfaces */
/* end statistics */
	struct	ifnet *if_next;
	u_char	if_type;		/* ethernet, tokenring, etc */
	u_char	if_addrlen;		/* media address length */
	u_char	if_hdrlen;		/* media header length */
	u_char	if_index;		/* numeric abbreviation for this if  */
/* more statistics here to avoid recompiling netstat */
	struct	timeval if_lastchange;	/* last updated */
	int	if_ibytes;		/* total number of octets received */
	int	if_obytes;		/* total number of octets sent */
	int	if_imcasts;		/* packets received via multicast */
	int	if_omcasts;		/* packets sent via multicast */
	int	if_iqdrops;		/* dropped on input, this interface */
	int	if_noproto;		/* destined for unsupported protocol */
	int	if_baudrate;		/* linespeed */
        int	if_pcount;		/* number of promiscuous listeners */
};

#define	IFF_UP		0x1		/* interface is up */
#define	IFF_BROADCAST	0x2		/* broadcast address valid */
#define	IFF_DEBUG	0x4		/* turn on debugging */
#define	IFF_LOOPBACK	0x8		/* is a loopback net */
#define	IFF_POINTOPOINT	0x10		/* interface is point-to-point link */
#define	IFF_NOTRAILERS	0x20		/* avoid use of trailers */
#define	IFF_RUNNING	0x40		/* resources allocated */
#define	IFF_NOARP	0x80		/* no address resolution protocol */
/* next two not supported now, but reserved: */
#define	IFF_PROMISC	0x100		/* receive all packets */
#define	IFF_ALLMULTI	0x200		/* receive all multicast packets */
#define	IFF_OACTIVE	0x400		/* transmission in progress */
#define	IFF_SIMPLEX	0x800		/* can't hear own transmissions */
#define	IFF_LLC0	0x1000		/* interface driver control/status */
#define	IFF_LLC1	0x2000		/* interface driver control/status */
#define	IFF_LLC2	0x4000		/* interface driver control/status */

/* flags set internally only: */
#define	IFF_CANTCHANGE \
	(IFF_BROADCAST|IFF_POINTOPOINT|IFF_RUNNING|IFF_OACTIVE|IFF_SIMPLEX)

/*
 * Output queues (ifp->if_snd) and internetwork datagram level (pup level 1)
 * input routines have queues of messages stored on ifqueue structures
 * (defined above).  Entries are added to and deleted from these structures
 * by these macros, which should be called with ipl raised to splimp().
 */
#define	IF_QFULL(ifq)		((ifq)->ifq_len >= (ifq)->ifq_maxlen)
#define	IF_DROP(ifq)		((ifq)->ifq_drops++)
#define	IF_ENQUEUE(ifq, m) { \
	(m)->m_nextpkt = 0; \
	if ((ifq)->ifq_tail == 0) \
		(ifq)->ifq_head = m; \
	else \
		(ifq)->ifq_tail->m_nextpkt = m; \
	(ifq)->ifq_tail = m; \
	(ifq)->ifq_len++; \
}
#define	IF_PREPEND(ifq, m) { \
	(m)->m_nextpkt = (ifq)->ifq_head; \
	if ((ifq)->ifq_tail == 0) \
		(ifq)->ifq_tail = (m); \
	(ifq)->ifq_head = (m); \
	(ifq)->ifq_len++; \
}
#define	IF_DEQUEUE(ifq, m) { \
	(m) = (ifq)->ifq_head; \
	if (m) { \
		if (((ifq)->ifq_head = (m)->m_nextpkt) == 0) \
			(ifq)->ifq_tail = 0; \
		(m)->m_nextpkt = 0; \
		(ifq)->ifq_len--; \
	} \
}

#define	IFQ_MAXLEN	50
#define	IFNET_SLOWHZ	1		/* granularity is 1 second */

/*
 * The ifaddr structure contains information about one address
 * of an interface.  They are maintained by the different address families,
 * are allocated and attached when an address is set, and are linked
 * together so all addresses for an interface can be located.
 */
struct ifaddr {
	struct	sockaddr *ifa_addr;	/* address of interface */
	struct	sockaddr *ifa_dstaddr;	/* other end of p-to-p link */
#define	ifa_broadaddr	ifa_dstaddr	/* broadcast address interface */
	struct	sockaddr *ifa_netmask;	/* used to determine subnet */
	struct	ifnet *ifa_ifp;		/* back-pointer to interface */
	struct	ifaddr *ifa_next;	/* next address for interface */
	int	(*ifa_rtrequest)();	/* check or clean routes (+ or -)'d */
	struct 	rtentry *ifa_rt;	/* ??? for ROUTETOIF */
	u_short	ifa_flags;		/* mostly rt_flags for cloning */
	u_short	ifa_llinfolen;		/* extra to malloc for link info */
};
#define IFA_ROUTE	RTF_UP		/* route installed */
/*
 * Interface request structure used for socket
 * ioctl's.  All interface ioctl's must have parameter
 * definitions which begin with ifr_name.  The
 * remainder may be interface specific.
 */
struct	ifreq {
#define	IFNAMSIZ	16
	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
	union {
		struct	sockaddr ifru_addr;
		struct	sockaddr ifru_dstaddr;
		struct	sockaddr ifru_broadaddr;
		short	ifru_flags;
		int	ifru_metric;
		caddr_t	ifru_data;
	} ifr_ifru;
#define	ifr_addr	ifr_ifru.ifru_addr	/* address */
#define	ifr_dstaddr	ifr_ifru.ifru_dstaddr	/* other end of p-to-p link */
#define	ifr_broadaddr	ifr_ifru.ifru_broadaddr	/* broadcast address */
#define	ifr_flags	ifr_ifru.ifru_flags	/* flags */
#define	ifr_metric	ifr_ifru.ifru_metric	/* metric */
#define	ifr_data	ifr_ifru.ifru_data	/* for use by interface */
};

struct ifaliasreq {
	char	ifra_name[IFNAMSIZ];		/* if name, e.g. "en0" */
	struct	sockaddr ifra_addr;
	struct	sockaddr ifra_broadaddr;
	struct	sockaddr ifra_mask;
};

/*
 * Structure used in SIOCGIFCONF request.
 * Used to retrieve interface configuration
 * for machine (useful for programs which
 * must know all networks accessible).
 */
struct	ifconf {
	int	ifc_len;		/* size of associated buffer */
	union {
		caddr_t	ifcu_buf;
		struct	ifreq *ifcu_req;
	} ifc_ifcu;
#define	ifc_buf	ifc_ifcu.ifcu_buf	/* buffer address */
#define	ifc_req	ifc_ifcu.ifcu_req	/* array of structures returned */
};

#ifdef KERNEL
#include "../net/if_arp.h"
struct	ifqueue rawintrq;		/* raw packet input queue */
struct	ifnet *ifnet;
struct	ifaddr *ifa_ifwithaddr(), *ifa_ifwithnet();
struct	ifaddr *ifa_ifwithdstaddr();
#else KERNEL
#include 
#endif KERNEL