Comparing Multiple
Source Code Trees, version 3.1

Warren Toomey
School of IT
Bond University
April 2010

his is my 3™ version of a tool to compare source

code trees to find similarities. The latest algorithm
IS not only elegant but extremely fast. A

performance analysis of the algorithm is given.



Why Write Such a Tool?

» To detect student plagiarism.
* To determine If your codebase is ‘infected':

- by proprietary code from elsewhere, or

— by open-source code covered by a license like
the GPL.

e To trace code genealogy between trees
separated by time (e.g. versions), useful for the
new field of computing history.




Issues with Code Comparison

» Can rearrangement of code be detected?
- per line? per sub-line?
» Can “munging of code” be detected?
— variable/function/struct renaming?
« What if one or both codebases are proprietary?
« How can third parties verify any comparison®?
« Can a timely comparison be done?
« What is the rate of false positives?

- of missed matches?



Code Comparison Requirements

* Must permit the detection of code rearrangement to
some extent.

« Must be reasonably fast.

» Any code representation must be exportable without
divulging the original code.

- this allows others to verify any code
comparison.

- however, something of the original code’s
structure has to be divulged.

* |f possible, it should detect different coding of the
same algorithm: renamed variables, constants,



Original Idea: Lexical Comparison

» Break the code Iin each tree into lexical tokens,
then compare runs of tokens between trees.

* This removes all the code’s semantics, and
deals with code rearrangement (but not code
‘munging’”).

« Example tokens:
- Singlechars: [[{}+-"/%
- Multiple chars: ++ && += =

- Keywords: int char return if for while do break
- Literal values: identifiers, “strings”, ‘x’, numbers



Advantages of a Lexical Approach

» Code does not need to be compilable.

* Non-experts can “see” the similarities.

- e.g. In a courtroom setting, once similar code
has been identified

e Other approaches:

- compare intermediate forms, e.g. bytecode
- compare functional results
- Identify and compare algorithmic units



CTF Files: Serialised Token
Streams

» Each source code tree is converted into a
serialised token stream: a CTF file.

« Each token Is represented by 1 byte.
» Literal values are hashed down to 2 bytes.
» Filenames and timestamps are also included.

« A CTF file reveals the code structure, but literal
values are not revealed.

- Allows for the export of a code tree to a 3™ party
without revealing the original source code.



of a CTF Stream

1 1d891 = NUM426 ; else

390: if (1d891 > NUM446 )
391:1d891 = NUMA446 ; else
392:1d891 = NUM48 ;

393: 1d55378 -> 1d32607 = id891 ;
394:1d55378 += NUM49 ;
395:1d32068 (id100 ++ ) ;

y_WW . _9wWw._93 - ] npg [ | 1 4 N N [ | | | N 4 N = R B B ' Y 1 e | \ \



1% Comparison Approach

foreach (token in one CTF file)

{
walk the other CTF file to find

a matching run of tokens;

}

« O(M * N), where M,N are the number of tokens
In each file. Very, very slow.

 This version could not compare a CTF file to a
set of CTF files, only to one other CTF file.




2"* Comparison Approach

» Break each token stream into groups of N
consecutive tokens: a token tuple.

» Find tuples in other code trees that match.
- this indicates a potential run of similarity.

» Once all tuple matches are found, merge them
to find the full extent of the runs of similarity.

« Much faster than v1, and allows multiple trees
to be compared simultaneously.

» But the merge component is very ugly.



3" Comparison Approach

» V2 sliced the streams up into N-token tuples,
found matches in the (unordered) set, and then
rebuilt the full runs of similarity.

» By having an unordered set of tuples, more
work had to be done to merge partial runs.

* |[n v3, we walk each CTF file from one end to
another, making token tuples.

e If we find a match, we know exactly which
existing runs may need to be extended.



}
}

parison Approach

) {

tokens from the source files in the tree) {
tokens in the run plus their identifiers;

e T2 in the tuple list which matches T) {
(T and T2 would extend an existing comparison run R) {
modify R so that T and T2 are now the end tuples of the run;
} else {
create a new comparison run R where T and T2 are the start and the
end tuples of the run;

add R to the list of comparison runs;

}

)
add tuple T to the tuple list;



Why Is This Approach Better?

 When a tuple match is found, there are only a
few Incomplete runs from the last tuple, so
finding the run to extend is easy.

* The algorithm is 5-10 times faster than v2.

* The algorithm's implementation is 40% smaller
than v2, and it is much more elegant.

» The algorithm now seems to scale well based
on the size of input. vl was O(M*N) and v2
seemed to be O(N?), where N= total number of
tokens.



Heuristics Used

» Tuples are searched using hashes + linked
lists.

— very low probability of false positives

- 1 in 2°¢ for runs of N tokens, near zero for larger
runs of similarity

 When a tuple match is found, existing
iIncomplete runs are searched using hashes.

- low probability (1 in 2**) that an existing run will
not be extended

- Instead, two separate runs will be reported



Performance Analysis

* A number of code trees, some related, up to
2MLOC were chosen as representative input.

— Several UNIX kernel trees
- Two Linux kernel trees
- Other application code trees

« Comparisons were done cumulatively, to
measure performance as input size increased.

« Several metrics:

- run time, # of tokens, # of tuple comparisons,
— # of complete similarity runs found.



Similarity Runs vs Time

wn
ge
c
(o)
@)
Q
n
=
Q
E
e
c
-
(+'4

5e+05 le+06 1.5e+06
Number of Runs of Similarity Found




Tuple Comparisons vs Time

N
o
I

]
9))
|

o
I

(1)
ge)
c
o
U
v
v
=
v
£
-
c
-
o

5e+06 le+07 1.5e+07
Number of Successful Tuple Comparisons




Number of Tokens vs Time

N

Run Time in Seconds
|_l
on

Ul

10 —

2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07
Total Number of Tokens




Performance Analysis

» Both the heuristics and the specific input affects
the program's performance.

— for small input, hashing dominates the run time

- for related trees, the cost to search large
numbers of incomplete runs dominates the

run time
« Run time vs. number of tuples: could be linear,
could be exponential.

* | ran the tool with several trees of random

tokens, to determine if non-similarity caused an
avnonential nerformance



Random Token Trees

Number of Tokens vs Time

N
o
I

(]
Ul

(]
o

(1)
©
c
o
v
Q
7))
=
)
E
-
c
=)
(- 4

1 | 1 ] 1 1 | 1
5e+06 le+07 1.5e+07
Total Number of Tokens




Conclusion

» New algorithm is more elegant, more efficient
than previous algorithms, and seems to scale
more linearly with input size.

* On a 2GHz P4 with only 1G of RAM:
- 15 trees, 2.87MLOC, 2.8M runs => 36 seconds
» Biggest drawback is memory usage:

- The above requires nearly all the RAM

- Memory usage is proportional to # tokens + # of
runs found



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

