
Comparing C Code Trees, 2.2

Dr. Warren Toomey
School of IT, Bond Uni
wtoomey@staff.bond.edu.au

This presentation describes a tool to lexically
compare multiple C code trees for possible code

copying, discusses some of the issues that must be
faced when attempting to compare code trees, and
highlights some of the design aspects of the tool.

Comparing C Code Trees, 2.2 – p.1/25

Ctcompare 2.2, a Work in Progress

Back in 2004 I published a paper on a code tree
comparison tool, ctcompare 1.2.

It allowed two trees of source code to be compared
for possible code copying.

This is a work in progress to extend the tool, to
compare one code tree against multiple other code
trees simultaneously.

?

Comparing C Code Trees, 2.2 – p.2/25

Why Write Such a Tool?

To detect student plagiarism.

To determine if your codebase is ‘infected’:

by proprietary code from elsewhere, or
by open-source code covered by a license like
the GPL.

To trace code genealogy between trees separated by
time (e.g. versions),

useful for the new field of computing history.

Comparing C Code Trees, 2.2 – p.3/25

Issues with Code Comparison

Can rearrangement of code be detected?

per line? per sub-line?

Can “munging of code” be detected?

variable/function/struct renaming?

What if one or both codebases are proprietary?
How can third parties verify any comparison?

Can a timely comparison be done?

What is the rate of false positives?

of missed matches?

Comparing C Code Trees, 2.2 – p.4/25

Code Comparison Requirements

Must permit the detection of code rearrangement to
some extent.

Must be reasonably fast: O(N 2) or better.

Any code representation must be exportable without
divulging the original code.

this allows others to verify any code comparison.
however, something of the original code’s
structure has to be divulged.

If possible, it should detect different coding of the
same algorithm: renamed variables, constants,
functions etc.

Comparing C Code Trees, 2.2 – p.5/25

Original Idea: Lexical Comparison

Break the C code in each tree into lexical tokens,
then compare runs of tokens between trees.

This removes all the code’s semantics, but does deal
with code rearrangement (but not code “munging”).

C has about 100 lexical units:

Single chars: [] { } + - * / % !
Multiple chars: ++ && += !=
Keywords: int char return if for while do break
Values: identifiers “strings” ‘x’ 1000L labels

We encode each token into 1 byte, then do “string”
comparison on 2 strings, one for each code tree.

Comparing C Code Trees, 2.2 – p.6/25

CTF Files: Serialised Token Streams

Step 1 is to parse all code files in a tree, and produce
a single file containing the serialised token stream
for all code files in the tree.

Each token is 1 byte.

Tokens with “values” (e.g. identifiers) are followed
by a 2-byte hash of the value.

Filenames are embedded, as are 1-byte LINE tokens,
so that line numbers can be inferred.

22CD ;(for ID

for (a = 5 ; a < sum ; a ++)

6FE2 = NUM

Comparing C Code Trees, 2.2 – p.7/25

Advantages of CTF Representation

The source code is not released, but the code’s
essential logic is released.

Variable names, constant values etc. are not
revealed.

However, if two files use the same variable name,
they will have the same hash value.

Code rearrangement via whitespace can be detected.

Rearrangement of code blocks can be detected.

CTF files can thus be exported to third parties
without revealing the original code.

Comparing C Code Trees, 2.2 – p.8/25

CTF Example

385: do {

386: id891 = id64003 [id100] ;

387: id64003 [id100] = NUM48 ;

388: if (id891 > NUM408)

389: id891 = NUM426 ; else

390: if (id891 > NUM446)

391: id891 = NUM446 ; else

392: id891 = NUM48 ;

393: id55378 -> id32607 = id891 ;

394: id55378 += NUM49 ;

395: id32068 (id100 ++) ;

396: } while (id100 < (id31677 + NUM445)) ;

Comparing C Code Trees, 2.2 – p.9/25

First Lexical Comparison Approach

foreach (token in one CTF file)

{

walk the other CTF file to find

a matching run of tokens;

}

while (x!=5) if (b<17) c = a * x; b++; ...

if (a<2) if (b<17) c = a * b; a++; printf(...

O(M ∗ N), where M,N are # of tokens in each file.

Algorithms (e.g. Rabin-Karp) used for performance.

Cannot compare a CTF file to a set of CTF files.
Comparing C Code Trees, 2.2 – p.10/25

How Much is Significant Copying?

Common code snippets are not significant:

Snippet Token Length

for (i=0; i<val; i++) 13 tokens
if (x>max) max=x; 10 tokens

err= stat(file, &sb); if (err) 14 tokens

Axiom: runs of <16 tokens are not significant.

Idea: use a run of 16 tokens as a lookup key to find
other trees with that same run of tokens.

Comparing C Code Trees, 2.2 – p.11/25

New Approach in 2.2

Take a group of 16 tokens (excluding in-line values),
known as a tuple.

Use the tuple as the primary key in a database
search.

The search result is a list of all files in all code trees
which have that run of tokens.

Implication: for a CTF file of N tokens, it will
generate N-15 keys. Database will be big.

However, key collisions should be rare.

A key collision (>1 CTF file using that key)
indicates potential code copying.

Comparing C Code Trees, 2.2 – p.12/25

Example Key and Result

Key

23 5f 40 5f 29 7b 5f 28 5f 23 5f 29 3b 5f 23 5f
-> id != id) { id (id -> id) ; id -> id

Result

CTF File Offset Name Offset Line # Last Line #

32V 219c 1e7c (dev/du.c) 92 94

Net/2 81de 7759 (kern/ktrace.c) 299 301

Comparing C Code Trees, 2.2 – p.13/25

The Tuple Database, Quantified

Four unrelated code trees, approx. 100K LOC.

Gdbm database size: 41 Mbytes. # of tuples: 350K.

% Tuples with N Results

1 82% 3 3% 5 0.7%

2 11% 4 1.6% 6 0.5%

6,059 tuple collisions between CTF files, i.e. 1.7%.

Worst offending tuples:

NUM,NUM,NUM ... 2,745 “str”,”str”... 1,809

,NUM,NUM,... 2,730 ,”str”,”str”,... 1,764

Comparing C Code Trees, 2.2 – p.14/25

New Lexical Comparison Approach

foreach (token in one CTF file)

{

calculate 16-tuple key starting here;

get list of results from database;

foreach result (not from our CTF file)

{

perform real token + value comparison

between both files, determine actual

run length of common tokens+values;

}

}

Comparing C Code Trees, 2.2 – p.15/25

Eureka!!

After writing the last two slides, I realised I was
wrong.

It is wasteful to traverse the CTF file: 82% of
16-token tuples are unique.

In fact, the database already holds a list of all
potential code similarities:

6,059 tuple collisions between different CTF
files out of 350K tuples.

We just need to iterate over the keys with multiple
results from different files.

Then, perform a real token + value comparison for
all result combinations.

Comparing C Code Trees, 2.2 – p.16/25

Algorithm Revisited

foreach (key in database)

{

get result: list of files with this key;

skip keys with no multi-file result collisions;

for (all result combinations)

{

perform real token + value comparison

between both files, determine actual

run length of common tokens+values;

}

}

Comparing C Code Trees, 2.2 – p.17/25

Performance: Old vs. New

Ctcompare 1.2 was O(N ∗ M)

where N,M are # tokens in each CTF file.
time to compare the 32V tree vs. Net/2 tree: 73s.

Ctcompare 2.2 seems to be O(N) or O(N log2N)

where N is # tuple collisions in the database.

Time to compare the 32V tree vs. the Net/2 tree: 2s

Time to compare 4 unrelated code trees: 5.6s

However: CTF insert into database is slow.

This needs to be improved.

Later, I will examine the O() complexity properly.
Comparing C Code Trees, 2.2 – p.18/25

Code Isomorphism

Code that is isomorphic can be detected if we can
see a 1-to-1 relationship between identifiers:

int maxofthree(int x, int y, int z)

{

if ((x>y) && (x>z)) return(x);

if (y>z) return(y);

return(z);

}

int bigtriple(int b, int a, int c)

{

if ((b>a) && (b>c)) return(b);

if (a>c) return(a);

return(c);

} Comparing C Code Trees, 2.2 – p.19/25

Code Isomorphism

We do this when evaluating actual matching run
lengths.

We must record the order of occurrence of each
identifier in each file: 1st id, 2nd id, 3rd id, 1st id
again, 3rd id again.

Then check 1-to-1 identifier correspondence:

Identifier Tag Tag Identifier

x id1 ⇔ id1 b
y id2 ⇔ id2 a
z id3 ⇔ id3 c

But if new identifier q ⇒ b, error as x ⇐ b.Comparing C Code Trees, 2.2 – p.20/25

Isomorphism Example: 32V cf. Net/2

Net/2 22 tokens long

if (bswlist.b_flags & B_WANTED) {
bswlist.b_flags &= ~B_WANTED;
thread_wakeup((int)&bswlist);

}

32V

if (bfreelist.b_flags&B_WANTED) {
bfreelist.b_flags &= ~B_WANTED;
wakeup((caddr_t)&bfreelist);

}
Comparing C Code Trees, 2.2 – p.21/25

Code Isomorphism

Code isomorphism is only used to compare
identifiers.

Other tokens with values (numeric literals, string
literals, character literals, labels) are compared
exactly.

The idea of isomorphism sounds complicated. The
actual solution turned out to be very elegant.

However, it does slow things down somewhat:

15 seconds vs. 2 seconds for the 32V cf. Net/2
tree comparison.
7,405 matches vs. 36 matches: most are bogus.

Comparing C Code Trees, 2.2 – p.22/25

Some Optimisations

Set a run-time limit on the number of isomorphic
relations permitted.

This helps to prevent false positive runs like this:

int creat(); int dup(); int exec(); . . . versus
int getlogin(); int setlogin(); int sysacct() . . .;

Extend the “16 tokens in a run” as the database key:

XOR together the 16-bit hashes for the literal
values (not identifiers).
Append to 16-byte token run for an 18-byte key.
This reduces the size of the “large result” keys
(e.g. NUM,NUM,NUM,NUM, ...) by 3/4.

Both improve the performance, too.
Comparing C Code Trees, 2.2 – p.23/25

Validating the Lexical Approach

In the USL vs. BSDi court case in the 1990s, USL
alleged the existence of significant amounts of 32V
code in Net/2, which had been released under a BSD
license.

Kirk McKusick’s deposition in the case: there are
only 56 lines of code common to the 32V and Net/2
kernels (13K lines in 32V, 230K in Net/2).

Lexical comparison finds all but 7 of these lines:
singles or doubles below the threshold of 16 tokens.

However, the comparison finds several other runs of
similar code not found by McKusick.

e.g the isomorphic example a few slides back.
Comparing C Code Trees, 2.2 – p.24/25

Comments on the Work in Progress

Lexical analysis into tokens + values is a big win.

exportable CTF files, comparison on code
structure, also finds code rearrangement

Isomorphic code comparison is also a big win.

Use of token tuples as keys was serendipitous.

trades space for time, but also reduces algorithm
compexity
allows for simultaneous comparison between
multiple code trees

Proof of concept works, now need to tidy up, refine
the solution & analyse it.

Comparing C Code Trees, 2.2 – p.25/25

	{Ctcompare 2.2, a Work in Progress}
	{Why Write Such a Tool?}
	{Issues with Code Comparison}
	{Code Comparison Requirements}
	{Original Idea: Lexical Comparison}
	{CTF Files: Serialised Token Streams}
	{Advantages of CTF Representation}
	{CTF Example}
	{First Lexical Comparison Approach}
	{How Much is Significant Copying?}
	{New Approach in 2.2}
	{Example Key and Result}
	{The Tuple Database, Quantified}
	{New Lexical Comparison Approach}
	{Eureka!!}
	{Algorithm Revisited}
	{Performance: Old vs. New}
	{Code Isomorphism}
	{Code Isomorphism}
	{Isomorphism Example: 32V cf. Net/2}
	{Code Isomorphism}
	{Some Optimisations}
	{Validating the Lexical Approach}
	{Comments on the Work in Progress}

