
Ctcompare:
Comparing Multiple Code

Trees for Similarity

Warren Toomey
School of IT, Bond University

Using lexical analysis with
techniques borrowed from DNA

sequencing, multiple code trees can
be quickly compared to find any

code similarities

Why Write a Code
Comparison Tool?

● To detect student plagiarism

● To determine if your codebase is
`infected' by proprietary code from
elsewhere, or by open-source code
covered by a license like the GPL

● To trace code genealogy between trees
separated by time (e.g. versions), useful
for the new field of computing history

Code Comparison Issues
● Can rearrangement of code be
detected?

 - per line? per sub-line?
● Can “munging of code” be detected?
 - variable/function/struct renaming?
● What if one or both codebases are
proprietary? How can third parties verify
any comparison?

● Can a timely comparison be done?
● What is the rate of false positives?
 - of missed matches?

Lexical Comparison
● First version: break the source code
from each tree into lexical tokens, then
compare runs of tokens between trees.

● This removes all the code's semantics,
but does deal with code rearrangement
(but not code “munging”).

Performance of Lexical
Approach

● Performance was O(M*N), when M and N
the # of tokens in each code tree

● Basically: slow, and exponential

● I also wanted to compare multiple code
trees, and also find duplicated code
within a tree

When is Copying
Significant?

● Common code fragments not significant:
 for (i=0; i< val; i++) 13 tokens
 if (x > max) max=x; 10 tokens
 err= stat(file, &sb); if (err) 14 tokens

● Axiom: runs of < 16 tokens insignificant

● Idea: use a run of 16 tokens as a lookup
key to find other trees with the same run
of tokens

Approach in Second
Version

● Take all 16-tokens runs in a code tree
● Use each as a key, and insert the runs
into a database along with position of
the run in the source tree

● Keys (i.e. runs of 16 tokens) with
multiple values indicate possible code
copying of at least 16 tokens

● For these keys, we can evaluate all code
trees from this point on to find any real
code similarity

Approach in Second
Version

Algorithm

 for each key in the database with multiple record nodes {
 obtain the set of record nodes from the database;

 for each combination of node pairs Na and Nb {
 if (performing a cross-tree comparison)
 skip this combination if Na and Nb in the same tree;
 if (performing a code clone comparison)
 skip this combination if Na and Nb in the same file;

 perform a full token comparison beginning at Na and Nb to
 determine the full extent of the code similarity, i.e. determine
 the actual number of tokens in common;

 add the matching token sequence to a list of "potential runs";
 }
 }
 walk the list of potential runs to merge overlapping runs, and
 remove runs which are subsets of larger runs;

 output the details of the actual matching token runs found.

Hashing Identifiers and
Literals in Each Code Tree

● Simply comparing tokens yields false
positives, e.g

 if (xx > yy) { aa = 2 * bb + cc; }
 if (ab > bc) {ab = 5 * ab + bc; }

● I hash each identifier and literal down to
a 16-bit value

● This obfuscates the original values while
minimising the amount of false positives

Isomorphic Comparison

● Hashing identifiers helps to ensure code
similarities are found

● Does not help if variables have been
renamed

● This can be solved with isomorphic
comparison: keep a 2-way variable
isomorphism table

● Code is isomorphic when variable
names are isomorphic across a long run
of code

Isomorphic Example

int maxofthree(int x, int y, int z)
 {
 if ((x>y) && (x>z)) return(x);
 if (y>z) return(y);
 return(z);
 }

int bigtriple(int b, int a, int c)
 {
 if ((b>a) && (b>c)) return(b);
 if (a>c) return(a);
 return(c);
 }

Bottlenecks
● In the second version, main bottleneck
is the merging of overlapping code
fragments which have been found to
match between two trees

● Similar to the problem with DNA
sequencing when genes are split up into
multiple fragments before sequencing

● Use of AVL trees here has helped to
reduce the cost of merging immensely

● Other more mundane optimisations
such as mmap() have also helped

Current Performance

● 54 seconds to compare 14 trees of code
totalling 1 million lines of C code

Results

● Many lines of code written at UNSW in
late 1970s still present in System V, and
in Open Solaris

● Thousands of lines of replicated code
inside Linux kernel

● AT&T vs BSDi lawsuit in early 1990s:
 - expert witness found 56 common lines
 in 230K lines between BSD and Unix
 - my tool find roughly same lines, plus
 100+ more isomorphic similarities

Question?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

