A telescope is an instrument designed for the observation of remote objects and the collection of electromagnetic radiation. The first known practically functioning telescopes were invented in the Netherlands at the beginning of the 17th century. The name "telescope" was derived from the Greek tele = 'far' and skopein = 'to look or see', and was coined by the Greek mathematician Giovanni Demisiani for one of Galileo's instruments. "Telescopes" can refer to a whole range of instruments operating in most regions of the electromagnetic spectrum.
Contents |
From the 10th-11th century, Ibn Sahl and Ibn Al-Haytham made advances in the understanding of optics that were essential to the development of spectacle quality lenses and the telescope; however, the earliest known telescopes were the refracting telescopes that appeared in the Netherlands in 1608. Their development is credited to three individuals: Hans Lippershey and Zacharias Janssen, who were spectacle makers in Middelburg, and Jacob Metius of Alkmaar. Galileo greatly improved upon these designs the following year. Niccolò Zucchi is credited with constructing the first reflecting telescope in 1616. In 1668, Isaac Newton designed an improved a reflecting telescope that bears his name, the "Newtonian reflector."
The invention of the achromatic lens in 1733 partially corrected color aberrations present in the simple lens and enabled the construction of shorter, higher functioning refracting telescopes. Reflecting telescopes, though not limited by the color problems seen in refractors, were hampered by the use of fast tarnishing speculum metal mirrors employed during the 18th and early 19th century—a problem alleviated by the introduction of silver coated glass mirrors in 1857, and aluminized mirrors in 1932. The maximum physical size limit for refracting telescopes is about 1 meter (40 inches), dictating that the vast majority of large optical research telescopes built since the turn of the 20th century have been reflectors.
The 20th century also saw the development of telescopes that worked in a wide range of wavelengths from radio to gamma-rays. The first radio telescope went into operation in 1937. Since then, a tremendous variety of complex astronomical instruments have been developed.
![]() |
This article or section is missing citations or needs footnotes. Using inline citations helps guard against copyright violations and factual inaccuracies. (July 2008) |
The name "telescope" covers a wide range of instruments and is difficult to define. They all have the attribute of collecting electromagnetic radiation so it can be studied or analyzed in some manner. The most common type is the optical telescope; other types also exist and are listed below.
An optical telescope gathers and focuses light mainly from the visible part of the electromagnetic spectrum (although some work in the infrared and ultraviolet). Optical telescopes increase the apparent angular size of distant objects as well as their apparent brightness. In order for the image to be observed, photographed, studied, and sent to a computer, telescopes work by employing one or more curved optical elements—usually made from glass—lenses, or mirrors to gather light and other electromagnetic radiation to bring that light or radiation to a focal point. Optical telescopes are used for astronomy and in many non-astronomical instruments, including: theodolites (including transits), spotting scopes, monoculars, binoculars, camera lenses, and spyglasses. There are three main types:
Radio telescopes are directional radio antennas that often have a parabolic shape. The dishes are sometimes constructed of a conductive wire mesh whose openings are smaller than the wavelength being observed. Multi-element Radio telescopes are constructed from pairs or larger groups of these dishes to synthesize large 'virtual' apertures that are similar in size to the separation between the telescopes; this process is known as aperture synthesis. As of 2005, the current record array size is many times the width of the Earth—utilizing space-based Very Long Baseline Interferometry (VLBI) telescopes such as the Japanese HALCA (Highly Advanced Laboratory for Communications and Astronomy) VSOP (VLBI Space Observatory Program) satellite. Aperture synthesis is now also being applied to optical telescopes using optical interferometers (arrays of optical telescopes) and aperture masking interferometry at single reflecting telescopes. Radio telescopes are also used to collect microwave radiation, which is used to collect radiation when any visible light is obstructed or faint, such as from quasars. Some radio telescopes are used by programs such as SETI and the Arecibo Observatory to search for exterrestrial life. One particularly exciting example is the Wow! signal, recorded in 1977.
X-ray and gamma-ray radiation go through most metals and glasses, but some X-ray telescopes use Wolter telescopes composed of ring-shaped 'glancing' mirrors made of heavy metals that are able to reflect the rays just a few degrees. The mirrors are usually a section of a rotated parabola and a hyperbola, or ellipse. Gamma-ray telescopes refrain from focusing completely and use coded aperture masks: the patterns of the shadow the mask creates can be reconstructed to form an image. These types of telescopes are usually on Earth-orbiting satellites or high-flying balloons since the Earth's atmosphere is opaque to this part of the electromagnetic spectrum.