
Comparing C Code Trees

Dr. Warren Toomey
Faculty of IT, Bond Uni
wtoomey@staff.bond.edu.au

This presentation describes a tool to lexically compare
two C code trees for possible code copying, analyses the

motivation behind the creation of the tool, discusses
some of the issues that must be faced when attempting to

compare code trees, and highlights some of the design
aspects of the tool.

Comparing C Code Trees – p.1/21

Why Write Such a Tool?

To detect student plagiarism.
To determine if your codebase is ‘infected’.
To trace code geneaology, useful for the new field of
computing history.
To confirm/deny FUD:

Sontag specifically claimed that there is
“significant [SCO] copyrighted and trade secret
code within Linux ... It’s all over the place”.
Code has been “munged around solely for the
purpose of hiding the authorship or origin of the
code”.

Linux Journal, May 2003.
Comparing C Code Trees – p.2/21

SCO’s Evidence of Stolen Code

Comparing C Code Trees – p.3/21

SCO’s Evidence of Stolen Code
Corresponding System V code:
s = splimp(); /* enter critical region */

for (bp = mp; bp->m_size && ((bp-mp)< MAPSIZ); bp++) {

if (bp->m_size >= size) {

a = bp->m_addr;

bp->m_addr += size;

if ((bp->m_size -= size) == 0) {

do {

bp++;

(bp - 1)->m_addr = bp->m_addr;

} while ((bp - 1)->m_size = bp->m_size);

}

splx(s); /* exit critical region */

return (a);

}

}

Comparing C Code Trees – p.4/21

Comments on This Example

Yes, SysV code was placed into the Linux kernel.
Not by IBM, but by SGI for the ia64 platform.
The code was removed due to its “ugliness”.
Code first appeared in UNIX in 1973, and is based
on a 1968 algorithm by Knuth.
Code was published in book form in 1997.
Caldera released early UNIXes under a BSD license
in 2002, before the code was added to Linux!
The Unix Heritage Society (which I run) was critical
in tracing the code’s genealogy.
I had to send SCO copies of the UNIX code from
before System V!

Comparing C Code Trees – p.5/21

http://minnie.tuhs.org/UnixTree/Nsys/sys/nsys/dmr/malloc.c.html
http://www.tuhs.org/Archive/Caldera-license.pdf
http://www.tuhs.org

The Other Code Presented by SCO

SCO presented another snippet of code in Linux
which it claimed was from System V.
The code turns out to be Berkeley Packet Filter code,
written in 1991 and placed under the BSD license:

Copyright (c) 1990, 1991 The Regents of the University of
California. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer...

It seems that when the BPF code was integrated into
System V, the BSD copyright notice was removed.
Thus, if SCO believes that this is their code,
someone violated the BSD license between 1991
and now.

Comparing C Code Trees – p.6/21

Issues with Code Comparison

Can rearrangement of code be detected?
per line? per sub-line?

Can “munging of code” be detected?
variable/function/struct renaming?

What if one or both codebases are proprietary?
How can third parties verify any comparison?
Can a timely comparison be done?
What is the rate of false positives?

of missed matches?

Comparing C Code Trees – p.7/21

Code Comparison Requirements

Must permit the detection of code rearrangement to
some extent.
Must be reasonably fast: O(n2) or better.
Any code representation must be exportable without
giving the original code away; this allows other to
verify any code comparison.

e.g. Eric Raymond’s comparator hashes code
lines, and then compares the hashes.

If possible, it should detect different coding of the
same algorithm: renamed variables, constants,
functions etc.

Comparing C Code Trees – p.8/21

My Idea: Lexical Comparison

Break C code into lexical tokens, compare runs of
tokens.
This removes all semantics, but deals with code
rearrangement.
C has about 100 lexical units:
Single chars: [] { } + - * / % !
Multiple chars: ++ && += !=
Keywords: int char return if for while do break
Values: identifiers “strings” ‘x’ 1000L
Encode each token into 1 byte, then do “string”
comparison on 2 strings, one for each code tree.

Comparing C Code Trees – p.9/21

1st Implementation: Brute-Force

1st implementation was a proof of concept one.
For each token in first string: find matching strings
starting at this point in the second string:
HELLOTHEREHOWAREYOU?
WHATCELLOBEWARELOTHERE?
Values of identifiers, string & other constants are
stripped, so as to not reveal original code.
Brute-force is O(n ∗ m), n & m are string lengths.
Slowed down by keeping “LINE” tokens within the
data structures, and by poor loop design.

Comparing C Code Trees – p.10/21

1st Implementation: Poor Accuracy

Missed some matches due false skipping, e.g:
HELLOTHEREHOWAREYOU?
WHATCELLOBEWARELOTHERE?
(H)ELLO matches (C)ELLO, but can’t skip to
THERE, as (L)LOTHERE matches (E)LOTHERE.
Too many false matches due to loss of identifiers,
and also common C features:

#include < word . word >
#include < word . word >

and
int id [] = (num, num, num,

num, num, num, num, ...
Comparing C Code Trees – p.11/21

Fixes to 1st Version
Remove skipping. Add run-time switch to ignore C
pre-processor directives.
Encode bottom 16-bits of numeric constants.

Allows rejection of non-matching numeric
constants.
Reveals some details of the original code, not
enough to breach copyright issues (I hope).

Still many false positives, e.g:
for (d=0; d < NDRV; d++)

and
for (i=0; i< j; i++)

Comparing C Code Trees – p.12/21

Code Isomorphism

Code that is isomorphic can be detected if we can
see a 1-to-1 relationship between identifiers:
int maxofthree(int x, int y, int z)
{
if ((x>y) && (x>z)) return(x);
if (y>z) return(y);
return(z);

}

int bigtriple(int b, int a, int c)
{
if ((b>a) && (b>c)) return(b);
if (a>c) return(a);
return(c);

}
Comparing C Code Trees – p.13/21

Code Isomorphism

Must record order of occurrence of each identifier in
each file: 1st id, 2nd id, 3rd id, 1st id again, 3rd id
again.
Then check 1-to-1 identifier correspondence:

Identifier Tag Tag Identifier
x id1 ⇔ id1 b
y id2 ⇔ id2 a
z id3 ⇔ id3 c

But if new identifier q ⇒ b, error as x ⇐ b.

Comparing C Code Trees – p.14/21

2nd Version: Isomorph + Hashes

Keep 16 bits of numeric constants. Keep
enumerated identifier tags. Still allows export of
tokenised code tree.
Isomorphic code reduces false matches.
Hash groups of 4 tokens into 32-bit integer.
Integer compares reduce cost of comparison, but
only once the start of a run is found. Still, about 4x
faster than brute-force.
Must still traverse token by token to find start of run.
Initial isomorphism code was buggy and
complicated; actual solution turned out to be very
elegant.

Comparing C Code Trees – p.15/21

Rabin-Karp Comparison Algorithm

Existing code: search to find start, search to find
matching run.
Assume we want to find minimum match of m
tokens.
Once possible start of a run is found, must do up to
m token comparisons to prove match, i.e.
strcmp(“cat”, “car”).
Instead, calculate hash of first token run of size m,
hash of second run of size m, compare hashes, i.e.
hash(“cat”) == hash(“car”)?
Use rolling hash function that is O(1) to shift 1
token, i.e. calculating hash(“art”) from hash(“car”)
is easy, if we have string “the cartridge”. Comparing C Code Trees – p.16/21

3rd Version: Use R-K for Speed

Given minimum threshold m, use Rabin-Karp to
find matching token hashes of length m from first
code tree in the second code tree.
No identifier tags nor numeric values used here for
speed; more non-matches than matches.
Possible hash collisions anyway, so then follow up
with isomorphic test to find possibly longer runs, or
disprove the ‘match’ found by Rabin-Karp.
Keep track of matches, so we don’t report smaller
matches in the same area, e.g. “HELLO” matches
“HELLO”, but “ELO” matches “ELO”.
About 8 to 16 times faster than the brute-force
approach.

Comparing C Code Trees – p.17/21

Validating the Lexical Approach

In the USL vs. BSDi court case in the 1990s, USL
alleged the existence of significant amounts of 32V
code in Net/2, which had been released under a BSD
license.
Kirk McKusick’s deposition in the case: there are
only 56 lines of code common to the 32V and Net/2
kernels (13K lines in 32V, 230K in Net/2).
Lexical comparison finds all but 7 of these lines:
singles or doubles below the threshold of 20 tokens.
Total run time on 2GHz Pentium: 50 seconds.
However, the comparison finds several other runs of
similar code not found by McKusick.

Comparing C Code Trees – p.18/21

http://minnie.tuhs.org/UnixTree/Net2Kern/930119.mckusick.decl.2

32V cf. Net/2: Missed Matches
Net/2

if (bswlist.b_flags & B_WANTED) {
bswlist.b_flags &= ~B_WANTED;
thread_wakeup((int)&bswlist);

}

32V

if (bfreelist.b_flags&B_WANTED) {
bfreelist.b_flags &= ~B_WANTED;
wakeup((caddr_t)&bfreelist);

}
Comparing C Code Trees – p.19/21

Comments on Implementation

The brute force version works but is slow.
Algorithms are like tools: use them where you can.
Know a repertoire, and have a good reference book.
Why did I consider lexical analysis? I was exposed
to a compiler course.
Isomorphic comparison: elegant & clever IMHO.
Latest version hashes identifier tags: allows export
of tokenised code tree. Shows if identifiers are the
same without revealing whole code tree.
Regardless, any comparison of millions of lines of
code will be slow, as it is O(n2).

Comparing C Code Trees – p.20/21

Where to get the Implementation?

For info on SCO vs. IBM, see
http://www.groklaw.com

My lexical comparison tool is at
http://minnie.tuhs.org/Programs/

It includes a collection of tokenised source trees,
including several System V releases.
Overall: 1,000 lines of C, 100 lines of header files,
250 lines of lex source.
Eric Raymond’s line-based comparison tool is at
http://www.catb.org/~esr/comparator/

His also has several heuristics built in, so each tool
should validate the other.

Comparing C Code Trees – p.21/21

http://www.groklaw.com
http://minnie.tuhs.org/Programs/
http://www.catb.org/~esr/comparator/

	{Why Write Such a Tool?}
	{SCO's Evidence of Stolen Code}
	{SCO's Evidence of Stolen Code}
	{Comments on This Example}
	{The Other Code Presented by SCO}
	{Issues with Code Comparison}
	{Code Comparison Requirements}
	{My Idea: Lexical Comparison}
	{1st Implementation: Brute-Force}
	{1st Implementation: Poor Accuracy}
	{Fixes to 1st Version}
	{Code Isomorphism}
	{Code Isomorphism}
	{2nd Version: Isomorph + Hashes}
	{Rabin-Karp Comparison Algorithm}
	{3rd Version: Use R-K for Speed}
	{Validating the Lexical Approach}
	{32V cf. Net/2: Missed Matches}
	{Comments on Implementation}
	{Where to get the Implementation?}

