
Quantifying The Incidence of Novice Programmers’ Errors

Dr. Warren Toomey

School of IT, Bond University

Abstract

Existing research shows that students learning to program
for the first time often make the same types of errors.
Tools have been written to give students useful feedback
when they make these errors, but no research has been
done to determine the effectiveness of these tools. This
paper is the preliminary result of a long-term study to
answer the research question: will timely reporting of
novice programming errors in an understandable format
reduce the incidence of these errors? We report on a
tool called Arjen which is designed to quantify the errors
made by novice programmers. We give the results of a
pilot study where first programming students used Arjen
as part of their learning environment.

Keywords: Programming, Common programming er-
rors, Computer Science Education, Java.

1 Introduction

Students learning to write computer programs for the first
time face a range of difficulties: the basic concepts of pro-
gramming (flow of execution, functions and parameters,
recursion etc.), the specific syntax and semantics of the
language being taught, as well as the process of imple-
menting the solution to a problem as a computer program.
This task is made more difficult when the compiler or de-
velopment environment issues error messages for innocu-
ous transgressions (e.g. a missing semicolon), and when
the error messages are so cryptic that the student cannot
interpret them and relate the messages to the concepts of
programming (e.g. the message “char cannot be derefer-
enced”).

At the same time, novice programmers are apt to make
a common set of mistakes as they absorb the concep-
tual and language-specific material given in their first pro-
gramming course (Spohrer & Soloway 1986, Hristova,
Misra, Rutter & Mercuri 2003, Jadud 2005). Given this
fact, it would seem to be intuitively obvious that, if use-
ful and descriptive feedback about these mistakes were
given to novice programmers, then they would learn not
to make these mistakes. This should reduce the time spent
on mundane mistakes and reinforce the learning of the
core concepts in programming. However, research in this
area tends to assert this hypothesis as self-evident and does
not measure the reduction in common errors when feed-
back is given to novice programmers (Jackson, Cobb &
Carver 2005, Nienaltowski, Pedroni & Meyer 2008).

This paper is the preliminary result of a long-term
study to answer the research question: will timely report-
ing of novice programming errors in an understandable
format reduce the incidence of these errors? To do this,
a tool needs to be developed that identifies common er-
rors in programs submitted by novice programmers, and
returns descriptive error information and advice to them.

Then, a longitudinal study with a large number of novice
programmers can be conducted to determine if the inci-
dence of common errors reduces over time when such a
tool is made available to them.

In this paper we describe Arjen: a tool to identify com-
mon programming errors. We also outline the quantified
results of a pilot study where Arjen was provided to a
small number of students learning their first programming
language, Java.

2 Previous Work

Hristovaet al. describe a tool called Expresso which iden-
tifies common errors made by novice programming stu-
dents learning Java (Hristova et al. 2003). The researchers
conducted an initial survey of lecturers, teaching assis-
tants and students to determine a suitable set of common
errors and created a list of around 20 identified errors.
With this list in hand, Hristovaet al. assessed the pos-
sible approaches to implementing a tool to detect these
errors, including a simple source code preprocessor and
a post-processor of the Java compiler’s error output. The
researchers chose to write Expresso as a Java parser to
be run before the actual compilation stage. Expresso was
written as a hand-crafted parser in C++ to target the spe-
cific list of 20 errors. Along with the Expresso analyser,
Hristovaet al. created a test suite of 20 example source
code files to ensure that Expresso found each of the er-
rors. While Expresso is an excellent idea (and inspired our
present research), it has several shortcomings. The hand-
written parser is quite fragile and it would be very diffi-
cult to modify Expresso to add other identified errors. The
error descriptions which Expresso returns to the program-
mer are single lines almost as cryptic as the error mes-
sages returned by the Java compiler. The research does
not quantify the benefit that Expresso provides the novice
programmer, nor does it provide any anecdotal evidence
on the benefit of such a tool.

Flowerset al. describe Gauntlet, a tool which also
identifies common errors made by novice programming
students learning Java (Flowers, Carver & Jackson 2004).
Gauntlet is integrated into an existing Interactive Devel-
opment Environment (IDE) and identifies 9 common pro-
gramming errors. Gauntlet’s error reporting is multi-line,
descriptive and provides possible remedies to the error.
Flowerset al. designed the error reports in Gauntlet to be
humorous not dry, and to “incite the student’s competitive
spirit”. Students are encouraged to see Gauntlet as a chal-
lenge which only a worthy student can pass. Gauntlet’s
error reports are periodically altered to keep the system en-
tertaining, and students can also contribute verbiage for er-
ror reports. After 18 months of Gauntlet use, Flowerset al.
posit several benefits. By having simple mistakes identi-
fied and explained, students can recognise these mistakes;
the incidence of these errors has been reduced, allowing
students to focus on problem solving with computers. The

quality of the students’ code has increased, allowing the
teaching of material at a higher level. Gauntlet has seen
a reduction in instructor workload as students require less
assistance in solving common errors. However, Gauntlet
still suffers from a fragile error detection mechanism, and
the benefits to students are qualified, not quantified.

3 Arjen

We have developed a programming tool called Arjen. Like
Expresso and Gauntlet, Arjen’s purpose is to identify com-
mon mistakes made by novice programmers. In doing so,
we have addressed the perceived deficiencies of the previ-
ous tools and constructed Arjen to support the long-term
research objective. Arjen is written to target one specific
programming language, Java, which is the first program-
ming language taught at our university.

Arjen’s architecture is best described by following the
flow of information when a programmer invokes Arjen on
their program. On this request, an Arjen client built into
the programmer’s IDE sends the program’s source code,
via a web session, to the centralised Arjen server. This
client/server design was chosen to allow the collection of
research data; the full Arjen functionality could be built
into the programmer’s IDE.

The Arjen server receives the program’s source code
and passes it to a number of plugin components. Each
component analyses the source code for common errors,
and returns back to the Arjen server a list of identifiers
for the errors found in the source code. The server col-
lates the errors from the plugin components and, using
the error identifiers, looks up a description of the errors
and possible solutions from a database. Using these error
descriptions, the Arjen server returns its analysis of the
programmer’s source code to the Arjen client where it is
displayed to the programmer.

3.1 Errors Detected by Arjen

Arjen has been primed with a list of 29 common program-
ming errors. These were collected from the list of errors
identified by Hristovaet al. and Flowerset al. (Hristova
et al. 2003, Flowers et al. 2004). We also ran the Java
compiler across 10 years worth of student assignment sub-
missions to identify other programming errors not in the
above lists. Below is the list of errors recognised by Ar-
jen; each error’s title as shown to the programmer is given,
along with an example of the error if possible.

1. Assignment in IF Statement:if (y = 7)
2. Use of Comparison After Boolean Operator:if (age >= 13 && <= 17)
3. Use of Bitwise Operators:if ((x & 0x1F) == 0x03)
4. Cannot Find A Certain Identifier

5. Please use Braces not Parentheses

6. Cannot Treat char Like a String:
har
h = `a'; if (
h.equals(`a'))
7. Else Code Without a Matching If Statement

8. You have an Empty Statement:for (int i=0; i<10; i++) ;
9. Empty Statement After IF:if (x == 7) ;

10. System.exit() needs a Value:System.exit();
11. Missing Identifier:publi

lass { ...

12. Probable Code in Wrong Place or Missing Braces,
Parentheses

13. Probable Imbalance with Braces

14. Incomparable Types:if (�X� == 7.3)
15. Incompatible Types:
har
h = 7.3;
16. Missing Left Brace ‘{’

17. Possible Loss of Precision:int x = 7.3;
18. Malformed FOR Loop:for (i=0; i<10) ...
19. Possible Misspelt Word or Command:string str;
20. Not a Statement:int i; i == 0;
21. Package Does Not Exist

22. Not Enough Closing Braces

23. Right Parenthesis Expected:System.out.println(�Your age is � age);
24. Missing Semi-colon on a Line:System.out.println(�Hello world�)
25. Checking for String (in)equality:String str=�a�; if (str == �b�)
26. Missing Double Quotes on String Literal:String str= �a;
27. Unrequired Extra Type Keyword Used:System.out.println(�age: � + int age);
28. Duplicate Variable in the Same Scope:int x = 7;
har
h; int x;
29. Cannot Use Something Which Gives ‘void’ in an Ex-

pression:int x = System.out.println(3 + 7);
3.2 Current Arjen Plugins

Existing tools such as Expresso and Gauntlet provide only
one mechanism to analyse source code to find common
programming mistakes. During Arjen’s development, we
realised this limits the type of errors that can be found. For
example, if the following line occurs in a Java program:system.out.println("Hello world");
then any language parser, including the compiler, would
indicate that the “system” class cannot be found. In real-
ity, the programmer has misspelt the identifier “System”.
To ensure Arjen best reports the errors found, we built the
Arjen server with a “plugin” architecture. This allows the
input program to be analysed for errors by several mecha-
nisms. At present, there are three available plugins.

The first Arjen plugin is a Yacc-based parser for the
Java language which identifies violations of the Java gram-
mar; examples include the use of brace symbols ‘{’ and
‘}’ where parentheses are expected, and malformed state-
ments such asfor (int i=0; i<10) The plugin also
reports errors which are legal Java grammar but which
have dubious style. For example, in the first programming
course students are not taught bitwise operators such as
‘&’ and ‘ |’; their use often indicates that the programmer
wanted to use the logical operators ‘&&’ and ‘||’.

Originally, we intended this parser plugin to have full
knowledge of the Java semantics including scope, variable

types and expression types (to identify errors such as nar-
rowing or type mismatches). We realised this would re-
quire us to write a full Java compiler, minus the code gen-
eration section. Instead, we chose to write the next Arjen
plugin.

The second Arjen plugin passes the program’s source
code to the existing Java compiler, which is run in a mode
that reports as many warnings and errors as possible. The
compiler attempts to compile the source code; its error
report is parsed using regular expressions to create the list
of errors for the Arjen server. This plugin gives the best
static analysis of the source code but it also highlights the
need for multiple analysis, as the compiler cannot report
on stylistic errors.

The third Arjen plugin analyses a program’s source
code using simple regular expressions. It detects a few
errors such as commonly misspelt words and phrases (e.g.System.out.println), and the use of comparison oper-
ators immediately following a boolean operator (e.g.if (x > 7 && < 10)).

Together, the three Arjen plugins detect and report on
the 29 errors at present, but the system can be extended
either with the detection of new errors in the existing plu-
gins or with new plugins added to Arjen. During the pilot
deployment of Arjen we logged any compiler errors and
warnings that were unrecognised by Arjen and extended
the Arjen compiler plugin to catch and report them.

3.3 An Example Error Report

Arjen’s purpose is not simply to translate cryptic compiler
error messages into a more human-readable format. Ar-
jen also contextualises an error report with obvious details
such as the line number and details such as the offending
identifiers, keywords or operators. For most errors Arjen
explains the most probable cause of the error and, if that
is the cause of the error, a way to rectify the error.

Error descriptions are stored in HTML format in a
database on the Arjen server; each description is in a
templated format so contextual information can be em-
bedded into the error report sent back to the program-
mer. Below is an example description of one error, the
bad_comparison_after_andor error:

On this line, you have the%s operator directly
followed by the%s comparison operator, which
is not legal in Java.
The && (AND) and || (OR) operators in Java
join together two boolean expressions, i.e. they
produce a true or false result. It looks like you
don’t have a complete boolean expression on
this line after the&& or || operator. A good
example of where this occurs is this:if (age >= 13 && <= 17) // WrongSystem.out.println("teenager");
After the&& operator there needs to be a proper
boolean comparison. In this case, the code
needs to compare theage variable against the
value 17, i.e.if (age >= 13 && age <= 17) // RightSystem.out.println("teenager");
Go back and check this line and make sure that
the code after the&& or || operator is a proper
boolean expression.

The two%s fields are filled in with information supplied
by the plugin reporting the error.

As Arjen is to be used in first programming courses,
the error descriptions attempt to relate each specific prob-
lem back to the essential programming concepts intro-
duced in the course. In the above example the concept of
a boolean expression is reiterated to the programmer, both
as an aid for understanding the error and also to reinforce
the course material.

4 Preliminary Results

The Arjen prototype has been deployed in a small class of
students learning the Java programming language for the
first time. The class size was small and students could
choose to opt-in on the Arjen trial. Over the 13-week
semester, 27 of the 35 students chose to use Arjen. The
Arjen server logged the programs submitted for analysis
along with a hashed version of each student’s identifier. It
also logged the errors found in each submission. At the
end of the semester, students were asked to give feedback
on their opinion of Arjen as a tool to help them with their
programming tasks. With a small sample size of 27 stu-
dents, these results are only indicative; a much larger study
is required to answer the original research question.

During the semester, students had on- and off-campus
access to Arjen for each of the three assignments (due in
weeks 4, 9 and 12) as well as for the practical exam in
week 13, but not for the mid-term and end-term written
theory exams. While 27 students in total used Arjen, the
tool was used by no more than 9 students each week. The
following table shows Arjen’s use over the semester with:

• the number of students who used Arjen each week,

• the number of Arjen invocations each week, and

• the number of errors reported by Arjen each week.

Week Students Invocations Errors
1 6 20 0
2 6 16 0
3 9 26 35
4 9 34 209
5 6 8 11
6 3 3 10
7 2 3 2
8 7 10 19
9 6 23 64
10 2 3 7
11 0 0 0
12 3 10 543
13 4 4 16

Unsurprisingly, Arjen’s use mirrors the dates for the
practical work. Of the 29 errors Arjen can detect, only
18 error types were found in the programs submitted by
students during the semester:

Error Count over Semester
Empty Statement 679

Unknown Identifier 201
Missing Semicolon 80
String (in)Equality 55

Misspelt Word/Command 32
Missing Braces/Parens 29

Not a Statement 21
Missing Identifier 16

Right Parens Expected 14
Not Enough Closing Braces 11

Braces Imbalance 8
Assignment in IF 8

Incompatible Types 6
Else without Matching IF 6
Missing Double Quotes 3

System.exit() needs Value 3
Possible Loss of Precision 2

Duplicate Variable in Scope 1

Although the sample size is quite small, there are some
surprises in these results. From teaching this course twice
a year for a decade, we feel the incidence of duplicate vari-
ables in scope and loss of precision seems to be too low,
and the number of empty statements is extremely high. On
the other hand, our observations of other errors such as
misspelt words, missing semicolons and the use of the==
and!= operators to test for String equality are always very
high. In general, the ranking of the error counts measured
by Arjen correlate well with our own teaching experience.

What we are quite pleased to see in these results is the
number of errors reported by Arjen which are not found
by the student’s existing IDE environment: misspelt words
and commands, the use of== and!= operators to compare
Java Strings, and the use of the assignment operator in an
IF statement.

In the end-of-semester student evaluation, the students
who used Arjen throughout the semester indicated that
they found the tool very useful: Arjen helped them to find
their errors, and it also helped the students to understand
what caused the errors.

Overall, the results from the pilot study show a major-
ity of students experimented with Arjen, but few students
used Arjen regularly throughout the semester. When used,
Arjen successfully identified many of the common mis-
takes made by first programming students with descriptive
feedback returned to the students. Arjen also caught errors
which had not been identified by the existing IDE.

5 Future Work

The development of Arjen is part of a much larger study
into the effectiveness of such a tool to reduce the incidence
of common programming mistakes. Before this can be un-
dertaken, some deficiencies in Arjen need to be addressed.

Arjen is, at present, at the prototype/proof of concept
stage of development. Due to time constraints, we wrote
Arjen to receive and check only a single Java source code
file at a time. This prevents Arjen from checking for errors
which occur when a Java program is composed of several
class files. The Arjen prototype needs to be rewritten so a
complete, multi-file Java program can be analysed.

Different Arjen plugins can classify the same error in
different ways. For example, a misspelt identifier will
be identified by the regular expression plugin as a mis-
spelling, and also by the compiler plugin as an unknown
identifier. At present Arjen returns details of both to the
programmer. We need to introduce a prioritisation scheme
into Arjen so the best classification of an error is chosen,
discarding the other reports. In this instance, only the mis-
spelling report should be returned to the programmer.

Arjen has three analysis plugins which identify the ma-
jority of common programming mistakes. There is scope
for other plugins which can identify other programming
errors. For example, a plugin for code coverage analysis
would be an ideal addition to Arjen. If Arjen was extended
in this way, then it would be a useful tool to more advanced
programmers as well as novice programmers. In this situa-
tion, Arjen would benefit from a configuration framework
so it could be tailored for different programming courses.
For example, Arjen could identify different groups of er-
rors and return different types of reports for a second pro-
gramming course on data structures as compared to a first
programming course.

Apart from the plugins, Arjen is quite agnostic to the
programming language. Arjen could be modified so that,
when a program is received for analysis, it identifies the
language (Java, C++, Python etc.), and sends the source
code to the plugins relevant to the language. In this way,
Arjen could become a framework for identifying common
programming mistakes across multiple languages.

At present, Arjen has been implemented using a
client/server architecture, collecting the raw data on stu-
dent submissions and identified errors. In the long-term,
Arjen should be built into the programmer’s IDE to re-
move the dependency on network connectivity.

The pilot deployment of Arjen also shows the need to
encourage students to use tools which will help them to
learn. In the first few weeks of semester we recommended
Arjen to the students, but we did not “push” the use of
Arjen for fear of skewing the results we were collecting.
We had hoped Arjen’s obvious benefits would encourage
all students to use it, but this was not the case. In the fu-
ture longitudinal study, we believe that students should be
given good documentation and training on all tools which
can assist them to stay on top of the learning curve: the
IDE, the debugger, the unit testing framework and Arjen.

6 Conclusion

We developed the Arjen tool for the same purpose as tools
like Expresso and Gauntlet. Arjen extends this existing
work in a number of ways. The descriptions of common
programming errors are detailed and descriptive, relate
the errors back to the core programming concepts being
taught, and also offer useful and understandable advice
on how a novice programmer can rectify the errors. Ar-
jen provides a plugin architecture; this allows for multiple
mechanisms to identify programming errors, and future
work will prioritise the results so programmers receive the
best description of each error. Arjen also logs the pro-
grams submitted, the errors identified and a hashed version
of a student identifier; this allows the lecturer to quantify
the errors being made by the novice programmers.

While a long-term longitudinal study is required to
evaluate the effectiveness of tools such as Arjen to reduce
the incidence of common programming mistakes, the pre-
liminary results show Arjen effectively identifies these er-
rors, and can quantify the incidence of these errors.

References

Flowers, T., Carver, C. & Jackson, J. (2004), Empowering
students and building confidence in novice program-
mers through gauntlet,in ‘34th ASEE/IEEE Fron-
tiers in Education Conference’, IEEE, pp. T3H/10–
T3H/13.

Hristova, M., Misra, A., Rutter, M. & Mercuri, R. (2003),
Identifying and correcting java programming errors
for introductory computer science students,in ‘Pro-
ceedings of the 34th SIGCSE Technical Sympo-
sium on Computer Science Education’, SIGCSE ’03,

ACM, New York, NY, USA, pp. 153–156.
URL: http://doi.acm.org/10.1145/611892.611956

Jackson, J., Cobb, M. & Carver, C. (2005), Identifying
Top Java Errors for Novice Programmers, pp. T4C–
24–T4C–27.

Jadud, M. C. (2005), ‘A first look at novice compilation
behaviour using bluej’,Computer Science Education
15(1), 25–40.

Nienaltowski, M.-H., Pedroni, M. & Meyer, B. (2008),
Compiler error messages: what can help novices?,in
‘Proceedings of the 39th SIGCSE technical sympo-
sium on Computer science education’, SIGCSE ’08,
ACM, New York, NY, USA, pp. 168–172.
URL: http://doi.acm.org/10.1145/1352135.1352192

Spohrer, J. C. & Soloway, E. (1986), ‘Novice mistakes:
are the folk wisdoms correct?’,Commun. ACM
29, 624–632.
URL: http://doi.acm.org/10.1145/6138.6145

